1.Research advance on objective classification indicators of traditional Chinese medicine constitution of health population
Fanwei WU ; Xianshi ZHOU ; Zhensheng DU ; Yuanhui LIU ; Miao ZHAO ; Qian XIONG ; Ye YE
International Journal of Traditional Chinese Medicine 2017;39(7):655-657
This article mainly elaborated around the four common categories of objective classification indicators, including constitution-gene and pathway, symptoms and signs, imaging examinations and biological indicators. We summarized advantages and limitations in all the objective classification categories, and put forward that both human secretory immunoglobulins A and salivary cortisol have the potential to be important classification indicators in constitution of traditional Chinese medicine, which might bring objective and quantitative criterion for constitution recognition and constitutional interventions in the future.
2.Studies on interaction of acid-treated nanotube titanic acid and amino acids.
Huqin ZHANG ; Xuemei CHEN ; Zhensheng JIN ; Guangxi LIAO ; Xiaoming WU ; Jianqiang DU ; Xiang CAO
Journal of Biomedical Engineering 2010;27(3):617-621
Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.
Acetic Acid
;
chemistry
;
Adsorption
;
Amino Acids
;
chemistry
;
Drug Interactions
;
Nanotubes
;
chemistry
;
Oxides
;
chemistry
;
Titanium
;
chemistry
3.Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells.
Zhe HU ; Lei WANG ; Zhensheng XIE ; Xinlei ZHANG ; Du FENG ; Fang WANG ; Bingfeng ZUO ; Lingling WANG ; Zhong LIU ; Zhisheng CHEN ; Fuquan YANG ; Lin LIU
Protein & Cell 2011;2(8):631-646
Parthenogenetic embryonic stem (pES) cells isolated from parthenogenetic activation of oocytes and embryos, also called parthenogenetically induced pluripotent stem cells, exhibit pluripotency evidenced by both in vitro and in vivo differentiation potential. Differential proteomic analysis was performed using differential in-gel electrophoresis and isotope-coded affinity tag-based quantitative proteomics to investigate the molecular mechanisms underlying the developmental pluripotency of pES cells and to compare the protein expression of pES cells generated from either the in vivo-matured ovulated (IVO) oocytes or from the in vitro-matured (IVM) oocytes with that of fertilized embryonic stem (fES) cells derived from fertilized embryos. A total of 76 proteins were upregulated and 16 proteins were downregulated in the IVM pES cells, whereas 91 proteins were upregulated and 9 were downregulated in the IVO pES cells based on a minimal 1.5-fold change as the cutoff value. No distinct pathways were found in the differentially expressed proteins except for those involved in metabolism and physiological processes. Notably, no differences were found in the protein expression of imprinted genes between the pES and fES cells, suggesting that genomic imprinting can be corrected in the pES cells at least at the early passages. The germline competent IVM pES cells may be applicable for germ cell renewal in aging ovaries if oocytes are retrieved at a younger age.
Animals
;
Cell Line
;
Electrophoresis, Gel, Two-Dimensional
;
Mice
;
Parthenogenesis
;
physiology
;
Pluripotent Stem Cells
;
metabolism
;
Proteomics
;
methods