1.Misdiagnosis of primary malignant tumor in small intestine
Shengchun LIU ; Zhengxiang YAO
Chinese Journal of General Surgery 1997;0(04):-
Objective To investigate the clinical manifestations, histopathological patterns and causes of misdiagnosis of primary malignant tumor in small intestine (PMTSI). Methods The clinical data of 90 cases of PMTSI confirmed by pathology admitted from 1981 to 2002 in our hospital were retrospectively analyzed. Results The main pathological patterns of PMTSI were adenocarcinoma, leiomyosarcoma, lymphoma and malignant neurilemmoma. The common clinical manifestations were abdominal pain, anemia and hemorrhage, jaundice, weight loss and intestinal obstructions. Preoperative diagnosis rate was 22.2%(20/90). It was easily misdiagnosed as other digestive tract diseases and pelvic disorders. Preoperative misdiagnosis rate was 77.8%. Conclusions The main pathological patterns of PMTSI are adenocarcinoma, leiomyosarcoma, lymphoma and malignant neurilemmoma.Its clinical manifestations and diagnostic examination methods are not good enough, which usually leads to misdiagnosis ,so attention must be paid.
2.Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice
Yongping LUO ; Jiaju ZHONG ; Qunmei YAO ; Zhengxiang GENG ; Chonggui CHEN ; Chengmin YU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(11):801-806
Objective:To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice.Methods:In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett- t test. Results:The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant ( P<0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant ( P<0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant ( P<0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant ( P<0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant ( P<0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances ( P<0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased ( P<0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased ( P<0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased ( P<0.05) . Conclusion:Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.
3.Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice
Yongping LUO ; Jiaju ZHONG ; Qunmei YAO ; Zhengxiang GENG ; Chonggui CHEN ; Chengmin YU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(11):801-806
Objective:To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice.Methods:In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett- t test. Results:The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant ( P<0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant ( P<0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant ( P<0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant ( P<0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant ( P<0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances ( P<0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased ( P<0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased ( P<0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased ( P<0.05) . Conclusion:Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.
4.Bibliometric analysis on health management of chronic diseases in China
Dandan LU ; Qian LIU ; Zhengxiang ZHANG ; Jie YAO ; Fang LIU
Chinese Journal of Modern Nursing 2021;27(26):3528-3534
Objective:To conduct a bibliometric analysis of relevant research in the field of health management of chronic diseases in China, and to discuss the research status, hot spots and development trends.Methods:The literatures on chronic disease health management research of China in CNKI, Wanfang database, VIP database and China Biology Medicine Database from January 1, 2000 to December 31, 2020 were retrieved. The annual number of papers, published journals, authors' number of papers and cooperation, research hotspots and development trends were analyzed by CiteSpace 5.5.2 software. The corresponding visual atlas were drawn.Results:A total of 8 841 articles related to health management of chronic diseases in China were retrieved. From 2000 to 2020, the number of articles issued basically showed an upward trend year by year, and the number in 2019 was the highest, which is 1 130 (12.8%) . There are 98 journals with a total number of papers equal or over 20, of which Chinese General Practice has the largest number of papers, with 349 related literatures (3.9%) . The authors with the largest number of articles published 18 articles, and 15 authors published 10 or more articles. "Chronic disease" is the most frequent key word, with a frequency of 1 804 times. Since 2016, research hot spots have been mainly distributed in graded diagnosis and treatment, combination of medical care and so on. Conclusions:Increasing attention has been paid to the health management of chronic diseases in China, but the researchers are relatively scattered. This study intuitively presents the research overview of chronic disease health management in China, preliminarily reveals the cooperative authors, and forms a general understanding of the research hotspots and development trends, which provides a reference for future research.
5.Expression of CD151 in Human Atherosclerotic Artery and Its Implication
Jun YANG ; Zhengxiang LIU ; Xiaofang SHEN ; Weidong YAO ; Hua QU ; Mu YANG ; Zhenli GAO ; Daowen WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(6):629-631
To investigate the expression of CD151 in human atherosclerosed artery and explore its clinical implications, Western blot and immunohistochemical techniques were used to determine the protein expression of CD151 in arterial tissues with atherosclerosis taken from 36 patients, including 26 cases who received bypass operation for peripheral artery atherosclerosis and 6 cases who died from coronary heart disease. The expression of CD151 in normal artery tissues from 15 healthy organ donators were also measured to serve as control. The results showed that expression of CD151 protein in atherosclerotic arteries was significantly higher than that in normal artery. In ath erosclerotic arteries, CD151 expression was localized in vascular smooth muscle cells (VSMCs) in all tunica media and in partial subintima, while in normal artery, sparse expression was found in tunica media near adventitia. It is concluded that high CD151 protein expression in artery is associated with atherosclerosis and CD151 plays an important role in the atherosclerosis related to VSMC. The expression of CD151 in human atherosclerotic artery depends on the extent of atherosclerotic dam age, it's independent of risk factors.