1.Preparation and characterization of ciliary neurotrophic factor sustained-release microcapsules
Xiaoli LI ; Mingbo WANG ; Changsheng CHEN ; Zhending SHE
Chinese Journal of Tissue Engineering Research 2014;(34):5455-5460
BACKGROUND:Conventional ophthalmic delivery of ciliary neurotrophic factor (CNTF) is extremely difficult to pass the blood-retinal barrier, resulting in a very low bioavailability and the need of long-term drug delivery. To solve the problem, the CNTF can be encapsulated in a semi-permeable membrane to form a microcapsule, which may then achieve the release of bioactive substances encapsulated, or bioactive molecules secreted by living cels and smal molecular metabolites through semi-permeability of the special membrane.
OBJECTIVE:To prepare a special structural CNTF sustained-release microcapsule.
METHODS: A selected poly(ether sulfone) holow fiber was cut into 1 cm long with its two ends sealed by 1181-M medical adhesive using UV curing. To prepare CNTF encapsulated microcapsule, one end was first sealed, and then the CNTF was loaded to poly(ether sulfone) microcapsule from the other end which then was sealed. The leaching liquor of sustained-release microcapsule was co-cultured with mouse fibroblast L929, to observe the cytotoxicity of the microcapsule. The sustained-release microcapsule was co-cultured with mouse retinal pigment epithelial cels, to observe the celladhesion ability of the microcapsule. The CNTF sustained-release microcapsule was immersed in physiological saline, to observe the degradability. Moreover,in vitro release behavior of immunoglobulin and CNTF were evaluated.
RESULTS AND CONCLSION:The CNTF sustained-release microcapsule had an inner diameter of about 398 μm and a membrane thickness of about 145 μm. The microcapsule presents a lot of macropores in the outer wal and many 10
nanometers micropores in the inner wal. The sustained-release microcapsule was not degraded in saline within
4 months, indicating good cellcompatibility. The microcapsule can selectively release CNTF while protecting against invading of antibodies (IgG), showing its good selective permeability. Meanwhile, the sustained-release microcapsule improved the initial burst release of traditional drug delivery vesicles. The microcapsule presents a mild sudden release in the middle stage, and then a sustained release.
2.Study on Evaluation Method of Scaffold for the Use of Liver Tissue Engineering
Juchao LIU ; Yunshan ZHAO ; Guangmin LIU ; Bofeng ZHANG ; Zhending SHE ; Yingxin XU
Chinese Medical Equipment Journal 2009;30(7):12-13,16
Obiective To set up a method of scaffold evaluation using human cell line as seed cells and screen appropriate scaffold for live tissue engineering, Methods HepG2 cells were plated onto biodegradable polymer scaffolds: PLGA, 3% chitosan (3%CS) and 2% silk fibroin (2%SF), and cultured in vitro. The growth, distribution and function of HepG2 cells in the scaffolds were evaluated using MTT assay, H.E. staining, and urea assay kit. Results HepG2 cells plated on the three scaffolds maintained a proliferative state. In contrast, the cells on the 2%SF proliferated strongly, while the cells on the PLGA and chitin proliferated poorly. Histological examination showed that HepG2 cells distributed evenly on the 2%SF scaffold with a high amount, while few cells could be found on the PLGA and ehitin at day 7. Cell function assay showed that HepG2 cells on the 2%SF and PLGA exhibited slower decrease of urea synthesis compared to HepG2 cells on the chitosan. Conclusion The three scaffolds have good biocompatibility. In contrast, 2%SF scaffold is more appropriate for liver tissue engineering. This method may be used for scale screening of scaffolds for liver tissue engineering.
3.Experimental study on the effect of three-dimensional porous structures on the vascularization rate of artificial dermis
Rongwei TAN ; Xi LIU ; Yingying CHEN ; Mengqiang XU ; Yuanjun GUO ; Danyan WANG ; Jiamei LIANG ; Jiao LIU ; Shasha YUAN ; Wei FAN ; Xiangkun WANG ; Zhending SHE
Chinese Journal of Burns 2021;37(10):959-969
Objective:To explore the effects of orienting three-dimensional porous network (type A) and honeycomb briquette-shaped vertically penetrating three-dimensional porous network (type B) on the vascularization rate of artificial dermis.Methods:The experimental research method was used. The artificial dermis was composed of a double layer of silicone layer and scaffold layer. Based on the difference of scaffold layer, they were divided into type A and type B artificial dermis (type A dermis and type B dermis, for short) containing type A and type B structure, respectively. The type A and type B structures were prepared by gradient freeze-drying technique and physical pore-making technique, respectively. The micro-morphology of two kinds of dermis scaffold was observed by scanning electron microscopy. The porosity of two kinds of dermis scaffold was measured by the Pyrex method. According to the method of national medical industry standard, the hydroxyproline content in degradation liquids and their residues in two kind of dermis were determined after degradation at 4, 8, 13, and 24 h, reflecting the degradation rates of two kinds of dermis. According to the random number table, L929 cells were divided into type A dermis group, type B dermis group, negative control group, and positive control group. The positive control group was added with minimum essential medium (MEM) containing 5% dimethyl sulfoxide, The negative control group was added with high-density polyethylene extract, and the other two groups were added with the corresponding extract. At 24 hours after culture, the growth rate of L929 cells was detected by methyl thiazolyl tetrazolium, and the cytotoxicity was graded. L929 cells and human umbilical vein endothelial cells (HUVECs) were inoculated into pore plates with two kinds of dermis preinstalled. On 1, 4, 7, and 14 d after inoculating, the adhesion and growth of L929 cells on the surfaces of the two kinds of scaffolds were detected by immunofluorescence method. On 7 d after inoculating, the migration of the above two kinds of cells into the two kinds of dermal scaffolds was detected by immunofluorescence and hematoxylin-eosin (HE) staining. Three full-thickness skin defect wounds of 5.0 cm×5.0 cm were created on both sides of the back of three 6-month-old healthy male Ba-Ma mini pigs. According to the random number table, six columns of wounds were divided into type A dermis two-step method group, type B dermis two-step method group, and type B dermis one-step method group. The wounds in type A dermis two-step method group and type B dermis two-step method group were transplanted with type A or type B dermis respectively before, and with autologous split-thickness skin grafting later. The wounds in type B dermis one-step method group were transplanted in a synchronous procedure including type B dermis (without silicone layer) and autologous skin grafting simultaneously. The bleeding, exudation, and infection of the wounds on the back in type A dermis two-step method group and type B dermis two-step method group on the 7th day after the second transplantation and in type B dermis one-step method group on the 14th day after the first transplantation were generally observed. The area of autologous skin graft was measured by the transparent film grid method, and the survival rate of autologous skin was calculated. On 4, 7, and 14 d after the first transplantation, the inflammatory cells, fibroblasts (Fbs), and capillary infiltration into the scaffolds of the three groups were detected by HE staining. On 7, 14 d after the first transplantation, the vascularization of the scaffolds was further observed by immunohistochemistry. On 28, 90 d after the first operation, the degradation of the scaffolds of type A dermis and type B dermis was observed by HE staining. Data were statistically analyzed with one-way analysis of variance, independent sample t test, and Bonferroni correction. Results:A large number of round and oval micropores were evenly distributed on the surface of type A scaffold, and the cylindrical hole walls could be observed arranging in a parallel direction in the longitudinal section. The honeycomb briquette-shaped penetrating macropores on the surface of type B scaffold were arranged in an orderly matrix. The pore walls of the honeycomb briquette-shaped penetrating macropores were connected by micropores to form a network structure. The porosity of type A dermis was (93.21±0.72)%, which was similar to (95.88±1.00)% of type B dermis ( t=4.653, P>0.05). The degradation rates of type A dermis at 4, 8, 13, and 24 h were similar to those of type B dermis at the corresponding time point ( t=0.232, 0.856, 0.258, 7.716, P>0.05). At 24 h after culture, the proliferation rates of L929 cells in the type A dermis group, type B dermis group, and negative control group were significantly higher than those of the positive control group ( t=2 393.46, 2 538.27, 1 077.77, P<0.01). The cytotoxicity rating of cells in positive control group was grade 4, while that of the other three groups was grade zero. On 1, 4, 7, and 14 d after inoculation, both L929 cells and HUVECs proliferated in a time-dependent manner in two kinds of dermal scaffolds. The adhesion growth and proliferation rate of the two kinds of cells on the surface of type B dermis was higher than that of type A dermis. On 7 d after inoculation, both L929 cells and HUVECs covered the surface of type B dermis and migrated into one side of the silicone layer. However, the above two kinds of cells migrated slowly into type A dermis, and only a few cells were found on one side of the silicone layer. There was no bleeding, exudation, or infection in the wounds repaired by type A and type B dermis. The survival rate of autologous skin grafting of 6 wounds in each group was 100%. On 4, 7, and 14 d after the first operation, inflammatory cells, Fbs, and capillaries gradually infiltrated into the scaffold layer, and the cell infiltration rate from high to low was type B dermis one-step method group, type B dermis two-step method group, and type A dermis two-step method group. The scaffold in wound in the type B dermis one-step method group gradually collapsed on 28 d after the first operation, and completely degraded in 3 months after the first operation. The scaffold degradation rate of type A dermis two-step method group was similar to that mentioned above. Conclusions:The honeycomb briquette-shaped vertically penetrating three-dimensional porous network structure of type B scaffold can accelerate its vascularization process, which is beneficial to autogenous split-thickness skin in one-step procedure to repair full-thickness skin defects wound in Ba-Ma mini pigs. Compared with the "two-step method" of staged transplantation of type A scaffold and autologous split-thickness skin, and one-step transplantation has equal efficacy and can provide a better choice for wound treatment.