1.Simulation and application of 3D printed compensator in electron radiation therapy for Merkel cell carcinoma
Junfeng WANG ; Dingyu LI ; Zhangling HUANG ; Xianglin YUAN ; Guoqing HU ; Hong QIU
Chinese Journal of Radiation Oncology 2016;25(9):999-1002
Objective To investigate the design and manufacture of 3D printed compensator in electron radiation therapy for Merkel cell carcinoma,and to verify the feasibility of this technique in electron radiation therapy.Methods Computed tomography was used to collect images of a human head phantom.The delineation of target volume of Merkel cell carcinoma was simulated in the planning system and a radiotherapy plan was formulated after adding the compensator.The compensator was printed out by a 3D printer and fixed on the head phantom.A second CT scan was performed to make a new treatment plan.For the two plans,several planes parallel to the beam were selected to calculate gamma passing rates.The actual dose distribution was measured using disposable films.The gamma passing rate was compared between the film system and the planning system.The conformity index (CI) and the heterogeneity index (HI) of target volume were compared between the plans using the printed compensator and the conventional compensator of the same thickness.Comparison between the two plans was made by paired t test.Results Using the dose distribution of the plan with simulated compensator,the gamma passing rate was 94.7±2.3% in the plan with 3D printed compensator.Using the dose distribution measured by the film,the gamma passing rate was 96.6% in the plan with 3D printed compensator.Compared with the conventional compensator,the 3D printed compensator achieved a significantly elevated CI (0.85 vs.0.69,P=0.004) and a slightly improved HI (1.30 vs.1.26,P=0.001).Conclusions The conformal dose distribution provided by 3D printed compensator for tumors at different depths meets the clinical need.
2.Electrical response grading versus House-Brackmann scale for evaluation of facial nerve injury after Bell's palsy: a comparative study.
Bin HUANG ; Zhangling ZHOU ; Lili WANG ; Cong ZUO ; Yan LU ; Yong CHEN
Journal of Integrative Medicine 2014;12(4):367-71
There are no convenient techniques to evaluate the degree of facial nerve injury during a course of acupuncture treatment for Bell's palsy. Our previous studies found that observing the electrical response of specific facial muscles provided reasonable correlation with the prognosis of electroacupuncture treatment. Hence, we used the new method to evaluate the degree of facial nerve injury in patients with Bell's palsy in comparison with the House-Brackmann scale. The relationship between therapeutic effects and prognosis was analyzed to explore an objective method for evaluating Bell's palsy.
3.Effect of indomethacin on BCR/ABL-Wnt/β-catenin pathway in K562 cells.
Zhangling LIU ; Jing HU ; Zhenglan HUANG ; Hui LI ; Xin LIU ; Wenli FENG
Journal of Southern Medical University 2015;35(7):998-1002
OBJECTIVETo investigate the effect of indomethacin on the proliferation and Wnt/β-catenin pathway in K562 cells.
METHODSThe cell growth of K562 cells treated with different concentrations of indomethacin was assessed with MTT assay, and the colony-forming ability of the cells was evaluated by colony-forming assay. The mRNA expressions of BCR/ABL and β-catenin were detected by RT-PCR, and the protein expressions of pBCR/ABL, total BCR/ABL, β-catenin, pGSK-3β and c-myc were analyzed by Western blotting.
RESULTSIndomethacin significantly suppressed the growth and colony-forming ability of K562 cells in a dose-dependent manner. Indomethacin treatment dose-dependently decreased the protein level of pBCR/ABL and total BCR/ABL without affecting bcr-abl mRNA expressions. Compared with the control groups, indomethacin-treated cells showed obviously decreased mRNA and protein expressions of β-catenin and decreased protein expressions of pGSK-3β and c-myc.
CONCLUSIONIndomethacin inhibits the proliferation of K562 cells by suppressing the activity of bcr-abl-Wnt/β-catenin pathway.
Cell Cycle ; Cell Proliferation ; Fusion Proteins, bcr-abl ; metabolism ; Humans ; Indomethacin ; pharmacology ; K562 Cells ; drug effects ; RNA, Messenger ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism