1.Isolation,culture and differentiation of human urine-derived stem cells into smooth muscle cells
Jiahui CHEN ; Xiaoqi DAI ; Yangang XU ; Yuanchao LI ; Mei HUANG ; Yifei ZHAN ; Yuxuan DU ; Liuqiang LI ; Yaochuan GUO ; Jun BIAN ; Dehui LAI
Chinese Journal of Tissue Engineering Research 2025;29(19):4076-4082
BACKGROUND:Traditional methods of urinary tract reconstruction are limited by donor scarcity,high complication rates,and suboptimal functional recovery.Tissue engineering strategies offer new directions in this field.Since the urinary tract is mainly composed of muscle tissue,the key is to find suitable seed cells and efficiently induce them to differentiate into smooth muscle cells.Comparative studies on the efficacy of different smooth muscle cell induction regimens are still lacking. OBJECTIVE:To isolate,culture,and identify human urine-derived stem cells,and to compare the effects of two different induction protocols. METHODS:Human urine-derived stem cells were isolated from urine samples of 11 healthy adult volunteers by multiple centrifugations.Surface markers were identified by flow cytometry.The multi-directional differentiation potential of human urine-derived stem cells was verified through osteogenic and adipogenic differentiation.Differentiation was induced by transforming growth factor-β1 or transforming growth factor-β1 combined with platelet derived growth factor for 14 days.Immunofluorescence staining and western blot assay were employed to compare the expression differences of smooth muscle-specific proteins(α-SMA and SM22). RESULTS AND CONCLUSION:(1)Urine-derived stem cells were successfully isolated from the eight urine samples of healthy people.These cells exhibit a"rice grain"-like morphology and possess a robust proliferative capacity.(2)Urine-derived stem cells exhibited high expression of mesenchymal stem cell surface markers(CD73,CD90,and CD44)and extremely low expression of hematopoietic stem cell surface markers(CD34 and CD45).These cells did not express CD19,CD105,and HLA-DR.(3)After osteogenic and adipogenic differentiation,the formation of calcium nodules and lipid droplets was observed,with positive staining results from Alizarin Red S and Oil Red O staining.(4)After 14 days of smooth muscle induction culture,immunofluorescence staining revealed that the smooth muscle differentiation rate of urine-derived stem cells treated with a combination of transforming growth factor-β1 and platelet derived growth factor was significantly higher compared to those treated with transforming growth factor-β1 alone(P<0.005).(5)After 14 days of smooth muscle induction culture,western blot assay further demonstrated that the expression levels of α-SMA and SM22 in the transforming growth factor-β1/platelet derived growth factor group were significantly elevated compared to those in the transforming growth factor-β1 only group(P<0.005).These findings confirm that urine-derived stem cells can be non-invasively isolated using multiple rounds of centrifugation.Compared with transforming growth factor-β1 alone,the combination of transforming growth factor-β1 and platelet derived growth factor can improve the efficiency of inducing urine-derived stem cells to differentiate into smooth muscle cells.
2.Root causes of quality changes in cultivated Chinese materia medica and countermeasures for high-quality production.
Chao-Geng LYU ; Chuan-Zhi KANG ; Ya-Li HE ; Zhi-Lai ZHAN ; Sheng WANG ; Xiu-Fu WAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(13):3529-3535
In order to support the implementation of the Opinions on Improving the Quality of Traditional Chinese Medicine and Promoting the High-Quality Development of the Traditional Chinese Medicine Industry and fundamentally promote the high-quality development of Chinese materia medica(CMM) industry, this article analyzed the quality and safety issues arising during the transition of CMM from wild harvesting to cultivation. Root causes of these issues were identified, including changes in the habitats of medicinal plants caused by inappropriate field cultivation patterns, excessive use of chemical inputs such as fertilizers and pesticides, and shortened cultivation periods due to rising economic costs. To address the above issues, the following countermeasures and suggestions were proposed to advance the high-quality development of CMM:(1) comprehensively adjust the cultivation patterns, vigorously promote ecological cultivation of CMM, and ensure production quality and safety of CMM from the source;(2) strengthen the breeding of high-quality, stress-resistant CMM varieties, improve cultivation techniques to reduce the use of fertilizers and pesticides, and improve the quality and efficiency of ecological cultivation of CMM;(3) systematically design the production, operation, and supervision models for ecological cultivation of CMM, carry out demonstrations of "high quality with fair price", and ensure the sustainable development of ecological cultivation of CMM.
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Plants, Medicinal/chemistry*
;
Plant Roots/chemistry*
;
China
;
Fertilizers/analysis*
;
Materia Medica/standards*
;
Medicine, Chinese Traditional/standards*
3.A case-control study of shoulder arthroscopic double row and single row technique for the treatment of Ideberg type ⅠA scapular glenoid fracture.
Zhe-Yuan SHEN ; Rong WU ; Qiao-Ying PENG ; Heng LI ; Song-Hua GUO ; Zhan-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(3):223-230
OBJECTIVE:
To compare clinical effect of arthroscopic double row fixation and single row fixation in treating Ideberg typeⅠA scapular glenoid fracture.
METHODS:
From June 2018 to December 2022, 26 patients with Ideberg typeⅠA scapular glenoid fracture treated with shoulder arthroscopy were divided into single-row anchor group and double-row anchor group according to the fixation method of fracture block. There were 12 patients in single-row anchor group, including 7 males and 5 females, aged from 25 to 53 years old with an average of (38.42±9.61) years old;the time from injury to operation ranged from 2 to 7 days with an average of (4.75±1.82) days. There were 14 patients in double-row anchor group, including 10 males and 4 females, aged from 21to 53 years old with an average of (37.36±10.19) years old;the time from injury to operation ranged from 1 to 8 days with an average of (4.21±2.01) days. The changes of shoulder joint flexion, abduction, lateral lateral rotation, Constant-Murley shoulder function score and Rowe scores were compared between two groups before operation and 1 year after operation. The percentage of bone mass in pelvis area before operation and the percentage of bone defect in pelvis area at the latest follow-up were compared between two groups.
RESULTS:
All patients were followed up for 12 to 15 months with an average of (13.08±1.17) months in single-row anchor group and 12 to 15 months with an average of (13.29±1.07) months in double-row anchor group, with no statistical significance between two groups (P>0.05). The results of anterior flexion, abduction and lateral lateral rotation in single-row anchor group were(86.67±6.62) °, (79.50±5.68) °, (38.17±1.70) ° before operation, and (162.50±4.52)°, (169.17±3.35)°, (50.67±10.20)° at 1 year after operation; while in double-row anchor group were (84.14±5.48) °, (81.71±5.20) °, (39.29±3.63) ° before operation and (162.29 ± 5.53) °, (167.14±3.61) °, (56.93±9.56) ° at 1 year after operation;the difference between two groups before operation and 1 year after operation was statistically significant (P<0.05). There were no significant difference between two groups (P>0.05). Constant-Murley scores and Rowe scores in single-row anchor group were (55.42±3.75), (43.75±18.49) before operation and (94.83±2.21), (95.42±4.50) at 1 year after operation, respectively;while in double-row anchor group were (54.50±7.88), (41.79±18.25) before operation and (94.36±4.73), (95.00±4.80) at 1 year after operation;there was no significant difference in Constant-Murley score and Rowe score between two groups before operation and 1 year after operation (P>0.05). There was significant difference in the percentage of bone mass in pelvis area between two groups before operation (P>0.05). There was no significant difference in the percentage of bone defect in the shoulder area between single-row anchor group(4.42±1.51)% and double-row anchor group (2.71±1.44)% at 1 year after operation (P<0.05).
CONCLUSION
Both single and double row fixation techniques for the treatment of Ideberg typeⅠA scapular glenoid fracture could receive satisfactory functional recovery. However, double-row fixation has more advantages in reducing bone resorption of fracture mass.
Humans
;
Female
;
Male
;
Middle Aged
;
Arthroscopy/methods*
;
Adult
;
Scapula/surgery*
;
Case-Control Studies
;
Fractures, Bone/physiopathology*
;
Fracture Fixation, Internal/methods*
;
Shoulder Joint/physiopathology*
;
Range of Motion, Articular
4.Clinical Applications of Circulating Tumor DNA in Response Evaluation and Relapse Monitoring of Primary Mediastinal Large B-Cell Lymphoma.
Lu PAN ; Xin-Miao JIANG ; Yan TENG ; Ning WANG ; Ling HUANG ; Han-Guo GUO ; Si-Chu LIU ; Xiao-Juan WEI ; Fei-Li CHEN ; Zhan-Li LIANG ; Wen-Yu LI
Journal of Experimental Hematology 2025;33(2):407-415
OBJECTIVE:
To explore the clinical significance of circulating tumor DNA (ctDNA) in response evaluation and relapse monitoring for patients with primary mediastinal large B-cell lymphoma (PMBCL).
METHODS:
The clinical characteristics, efficacy and survival of 38 PMBCL patients in our hospital from January 2010 to April 2020 were retrospectively analyzed. The ctDNA monitoring was conducted by targeted next-generation sequencing (NGS).
RESULTS:
Among the 38 patients, 26 cases were female, and 32 cases were diagnosed with Ann Arbor stage I-II. The 5-year overall survival (OS) rate and progression-free survival (PFS) rate were 74.7% and 61.7%, respectively. Males and those with high aaIPI scores (3 points) had a relatively poor prognosis. The NGS results of 23 patients showed that STAT6 (65.2%), SOCS1 (56.5%), and TNFAIP3 (56.5%) were the most common mutated genes. Patients with stable disease (SD)/progressive disease (PD) exhibited enrichment in cell cycle, FoxO, and TNF signaling pathways. A total of 29 patients underwent end-of-treatment PET/CT (EOT PET/CT), and 16 of them received ctDNA monitoring with 12 negative. Among 6 patients with EOT PET/CT positive (Deauville 4), 4 underwent ctDNA monitoring, and 3 of them were negative, being still in continuous remission without any subsequent anti-tumor therapy.
CONCLUSION
CtDNA may be combined with PET/CT to assess efficacy, monitor relapse, and guide treatment of PMBCL.
Humans
;
Circulating Tumor DNA/blood*
;
Female
;
Mediastinal Neoplasms
;
Male
;
Retrospective Studies
;
High-Throughput Nucleotide Sequencing
;
Prognosis
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Middle Aged
;
Adult
;
Aged
;
Neoplasm Recurrence, Local
;
Mutation
5.Construction and evaluation of a cell model simulating the change of testicular microenvironment mediated by hypoxic and high-pressure conditions in varicocele mice.
Shu-Lin LIANG ; Li-Guo GENG ; Ling HAN ; Chu-Nan RONG ; Zhan QIN ; Juan DU ; Chao-Ba HE ; Shao-Ying YUAN
National Journal of Andrology 2025;31(6):483-491
Objective: Varicocele (VC) induces male infertility by mediating changes in the testicular microenvironment, in which testicular hypoxia and high-pressure are important pathological conditions. This study aims to compare the mouse spermatogenesis (GC-2spd) cells and Sertoli (TM4) cells of mouse testis after hypoxic modeling and hypoxic and high-pressure combined modeling, and to explore the feasibility of establishing a hypoxic and high-pressure combined cell model. Methods: On the basis of cell hypoxia induced by CoCl2, the complex model of testicular cell hypoxia and high pressure was constructed by changing the osmotic pressure of GC-2 and TM4 cell medium with a high concentration of NaCl solution. After selecting the intervention concentration of CoCl2 by MTT test and detecting the expression level of HIF-1α for the determination of the optimal osmotic pressure conditions of the cell model, the cells were divided into normal group, hypoxia model group and composite model group. And the levels of OS, programmed cell death, inflammatory factors, and the expression levels of pyroptosis-related proteins were compared between the normal group and the groups with different modeling methods. Results: The optimal intervention concentration of CoCl2 in GC-2 and TM4 cells was 150 and 250μmol/L, respectively, and the expression of HIF-1α was the highest in both cells under osmotic pressure of 500 mOsmol/kg (P<0.05). Compared with the normal group, the SOD levels of GC-2 and TM4 cells decreased (all P<0.05), CAT level decreased (all P<0.05), and MDA level increased (all P<0.01), and the OS level of GC-2 and TM4 cells was more obvious than that of the hypoxia model group (all P<0.05). Compared with the normal group, apoptosis occurred in GC-2 and TM4 cells after composite modeling (all P<0.05). Compared with the normal group, the mRNA expressions of IL-1β, IL-18, TNF-α and COX-2 in GC-2 and TM4 cells significantly increased (P<0.01) and higher than those in hypoxia model group (P<0.05) and induced pyroptosis (P<0.01). The expression level of GSDMD increased (P<0.05). Conclusion: The cell model with hypoxia and high pressure combined modeling can not only induce oxidative stress and apoptosis of cells better than that with hypoxia alone, but also further cause inflammatory response damage and pyroptosis, which simulates the changes of testis microenvironment mediated by hypoxia and high pressure combined conditions in VC. This cell model can be used for studying the pathogenesis of VC-associated male infertility, evaluating drug efficacy, and exploring pharmacological mechanisms.
Male
;
Animals
;
Varicocele/pathology*
;
Mice
;
Testis/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Hypoxia
;
Cobalt
;
Sertoli Cells/metabolism*
;
Osmotic Pressure
;
Spermatogenesis
;
Cellular Microenvironment
;
Infertility, Male
;
Disease Models, Animal
6.Adhesion Mechanisms of Aquatic Fouling Organisms Mediated by Biomacromolecules
Dan HE ; Shi-Guo LI ; Ai-Bin ZHAN
Progress in Biochemistry and Biophysics 2025;52(7):1833-1852
Aquatic organisms can secrete biomacromolecules through specialized organs, tissues, or structures, enabling adhesion to underwater material surfaces and leading to severe biofouling issues. This phenomenon adversely impacts aquatic ecosystem health and human activities. Biofouling has emerged as an emerging global environmental challenge. Adhesion serves as the foundation of biofouling, representing a critical step toward a comprehensive understanding of the adhesion mechanisms of aquatic organisms. Biomacromolecules, including proteins, lipids, and carbohydrates, are the primary functional components in the adhesive substances of aquatic fouling organisms. Research indicates that these biomacromolecules exhibit diversity in types and characteristics across different aquatic organisms, yet their adhesion mechanisms show unifying features. Despite significant progress, there remains a lack of comprehensive reviews on the adhesion mechanisms mediated by biomacromolecules in aquatic fouling organisms, particularly on the roles of lipids and carbohydrates. Through a comprehensive analysis of existing literature, this review systematically summarizes the mechanistic roles of three classes of macromolecules in aquatic biofouling adhesion processes. Proteins demonstrate central functionality in interfacial adhesion and cohesion through specialized functional amino acids, conserved structural domains, and post-translational modifications. Lipids enhance structural stability via hydrophobic barrier formation and antioxidative protection mechanisms. Carbohydrates contribute to adhesion persistence through cohesive reinforcement and enzymatic resistance of adhesive matrices. Building upon these mechanisms, this review proposes four prospective research directions: optimization of protein-mediated adhesion functionality, elucidation of lipid participation in adhesion dynamics, systematic characterization of carbohydrate adhesion modalities, and investigation of macromolecular synergy in composite adhesive systems. The synthesized knowledge provides critical insights into underwater adhesion mechanisms of aquatic fouling organisms and establishes a theoretical foundation for developing mechanism-driven antifouling strategies. This work advances fundamental understanding of bioadhesion phenomena while offering practical guidance for next-generation antifouling technology development.
7.Potential utility of albumin-bilirubin and body mass index-based logistic model to predict survival outcome in non-small cell lung cancer with liver metastasis treated with immune checkpoint inhibitors.
Lianxi SONG ; Qinqin XU ; Ting ZHONG ; Wenhuan GUO ; Shaoding LIN ; Wenjuan JIANG ; Zhan WANG ; Li DENG ; Zhe HUANG ; Haoyue QIN ; Huan YAN ; Xing ZHANG ; Fan TONG ; Ruiguang ZHANG ; Zhaoyi LIU ; Lin ZHANG ; Xiaorong DONG ; Ting LI ; Chao FANG ; Xue CHEN ; Jun DENG ; Jing WANG ; Nong YANG ; Liang ZENG ; Yongchang ZHANG
Chinese Medical Journal 2025;138(4):478-480
8.Small nucleolar RNA host gene 1 (SNHG1) facilitates gemcitabine chemosensitivity in gallbladder cancer by regulating the miR-23b-3p/phosphatase and tensin homolog (PTEN) pathway.
Hui WANG ; Yixiang GU ; Miaomiao GUO ; Ming ZHAN ; Min HE ; Yang ZHANG ; Linhua YANG ; Yingbin LIU
Chinese Medical Journal 2025;138(21):2783-2792
BACKGROUND:
Growing evidence suggests that long non-coding RNAs (lncRNAs) exert pivotal roles in fostering chemoresistance across diverse tumors. Nevertheless, the precise involvement of lncRNAs in modulating chemoresistance within the context of gallbladder cancer (GBC) remains obscure. This study aimed to uncover how lncRNAs regulate chemoresistance in gallbladder cancer, offering potential targets to overcome drug resistance.
METHODS:
To elucidate the relationship between gemcitabine sensitivity and small nucleolar RNA host gene 1 ( SNHG1 ) expression, we utilized publicly available GBC databases, GBC tissues from Renji Hospital collected between January 2017 and December 2019, as well as GBC cell lines. The assessment of SNHG1, miR-23b-3p, and phosphatase and tensin homolog (PTEN) expression was performed using in situ hybridization, quantitative real-time polymerase chain reaction, and western blotting. The cell counting kit-8 (CCK-8) assay was used to quantify the cell viability. Furthermore, a GBC xenograft model was employed to evaluate the impact of SNHG1 on the therapeutic efficacy of gemcitabine. Receiver operating characteristic (ROC) curve analyses were executed to assess the specificity and sensitivity of SNHG1.
RESULTS:
Our analyses revealed an inverse correlation between the lncRNA SNHG1 and gemcitabine resistance across genomics of drug sensitivity in cancer (GDSC) and Gene Expression Omnibus (GEO) datasets, GBC cell lines, and patients. Gain-of-function investigations underscored that SNHG1 heightened the gemcitabine sensitivity of GBC cells in both in vitro and in vivo settings. Mechanistic explorations illuminated that SNHG1 could activate PTEN -a commonly suppressed tumor suppressor gene in cancers-thereby curbing the development of gemcitabine resistance in GBC cells. Notably, microRNA (miRNA) target prediction algorithms unveiled the presence of miR-23b-3p binding sites within SNHG1 and the 3'-untranslated region (UTR) of PTEN . Moreover, SNHG1 acted as a sponge for miR-23b-3p, competitively binding to the 3'-UTR of PTEN , thereby amplifying PTEN expression and heightening the susceptibility of GBC cells to gemcitabine.
CONCLUSION
The SNHG1/miR-23b-3p/PTEN axis emerges as a pivotal regulator of gemcitabine sensitivity in GBC cells, holding potential as a promising therapeutic target for managing GBC patients.
Humans
;
Deoxycytidine/pharmacology*
;
PTEN Phosphohydrolase/genetics*
;
Gemcitabine
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/genetics*
;
Gallbladder Neoplasms/genetics*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Drug Resistance, Neoplasm/genetics*
;
Mice, Nude
;
Antimetabolites, Antineoplastic
;
Gene Expression Regulation, Neoplastic
9.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
10.Two new sesquiterpenoids from Aucklandiae Radix and their farnesoid X receptor agonist activity.
Qian-Yu CHEN ; Dan HUANG ; Hong-Hong ZHAN ; Fan-Cheng MENG ; Guo-Wei WANG ; Min CHEN
China Journal of Chinese Materia Medica 2025;50(7):1810-1816
Various chromatographic methods were comprehensively applied to study the chemical composition of the ethyl acetate extract from Aucklandiae Radix. The structures of all compounds were identified by analyzing their physicochemical properties and using spectroscopic methods. Two new sesquiterpenoids, named auclappsines A and B(1 and 2) were isolated and identified. Through in vitro high content screening and with the use of a guggulsterone-induced L02 cells, the effects of 1 and 2 on farnesoid X receptor(FXR) protein expression were investigated. The results showed that 1 had a significant FXR activation effect, providing a scientific basis for the development of drugs for the treatment of liver and gallbladder diseases.
Receptors, Cytoplasmic and Nuclear/genetics*
;
Humans
;
Sesquiterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Cell Line
;
Molecular Structure

Result Analysis
Print
Save
E-mail