1.Huanglian-Renshen-Decoction Maintains Islet β-Cell Identity in T2DM Mice through Regulating GLP-1 and GLP-1R in Both Islet and Intestine.
Wen-Bin WU ; Fan GAO ; Yue-Heng TANG ; Hong-Zhan WANG ; Hui DONG ; Fu-Er LU ; Fen YUAN
Chinese journal of integrative medicine 2025;31(1):39-48
OBJECTIVE:
To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine.
METHODS:
The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water). The entire treatment of mice lasted for 6 weeks. Blood insulin, glucose, and GLP-1 levels were quantified using enzyme-linked immunosorbent assay kits. The proliferation and apoptosis factors of islet cells were determined by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Then, GLP-1, GLP-1R, prohormone convertase 1/3 (PC1/3), PC2, v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA), and pancreatic and duodenal homeobox 1 (PDX1) were detected by Western blot, IHC, IF, and real-time quantitative polymerase chain reaction, respectively.
RESULTS:
HRD reduced the weight and blood glucose of the db/db mice, and improved insulin sensitivity at the same time (P<0.05 or P<0.01). HRD also promoted mice to secrete more insulin and less glucagon (P<0.05 or P<0.01). Moreover, it also increased the number of islet β cell and decreased islet α cell mass (P<0.01). After HRD treatment, the levels of GLP-1, GLP-1R, PC1/3, PC2, MafA, and PDX1 in the pancreas and intestine significantly increased (P<0.05 or P<0.01).
CONCLUSION
HRD can maintain the normal function and identity of islet β cell, and the underlying mechanism is related to promoting the paracrine and endocrine activation of GLP-1 in pancreas and intestine.
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Glucagon-Like Peptide-1 Receptor/metabolism*
;
Insulin-Secreting Cells/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Blood Glucose/metabolism*
;
Insulin/blood*
;
Mice
;
Intestinal Mucosa/pathology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Islets of Langerhans/pathology*
2.Exploration of the mechanism of cognitive impairment induced by ketamine in mice based on metabolomics
Tingting LUO ; Xiaoxiao YAO ; Xinyi ZHAN ; Yiru MA ; Ting GAO ; Ying WEI
China Pharmacy 2025;36(12):1436-1441
OBJECTIVE To explore the potential mechanism of ketamine-induced cognitive impairment in mice based on metabolomics. METHODS Male C57BL/6 mice were randomly divided into control group and ketamine group (25 mg/kg), with 12 mice in each group. Each group of mice was intraperitoneally injected with normal saline or corresponding drugs, 4 times a day, for 10 consecutive days. On the last 2 days of drug administration, the cognitive behavior was evaluated by Y maze and novel object recognition test, and the histopathological changes in the prefrontal cortex (PFC) were observed. Ultra-high performance liquid chromatography-tandem mass spectrometry technology was used to analyze the changes of metabolites in PFC, screen for differential metabolites, and perform pathway enrichment analysis. RESULTS Compared with the control group, the morphology of PFC neurons in the ketamine group of mice was inconsistent. There were cavities around the nucleus, and the number of deeply stained cells increased. The mean optical density value of the Nissl staining positive area was significantly reduced, and the alternation rate and discrimination index were significantly reduced (P<0.05 or P<0.01). In the PFC tissue samples of mice of the two groups, there were a total of 114 differential metabolites, including 73 up-regulated and 41 down-regulated metabolites, including glutamine, succinic acid, ketoglutarate, and choline, etc. The differential metabolites mentioned above were mainly enriched in metabolism of alanine, aspartate and glutamate, metabolism of arginine and proline, γ aminobutyric acid synapses, pyrimidine metabolism, cholinergic synapses pathways, etc. CONCLUSIONS Ketamine can induce cognitive impairment in mice. Its neurotoxicity is related to abnormal synaptic transmission and energy metabolism, and neuroimmune regulation disorders.
3.Platelet bacterial contamination in China: a meta-analysis
Xiuyun LIAO ; Yang HUANG ; Yuan ZHANG ; Miao HE ; Zhan GAO
Chinese Journal of Blood Transfusion 2025;38(9):1272-1279
Objective: To investigate the status and influencing factors of platelet bacterial contamination in China, and to provide theoretical support for relevant policies in blood collection and transfusion institutions. Methods: A meta-analysis by systematically searching studies on platelet bacterial contamination in China published between 1998 and 2023 was conducted. Data analysis was performed using R4.4 software to combine studies that met the inclusion criteria. Results: Twenty-three studies were included after screening. The combined analysis showed that the overall contamination rate of platelets in China was 0.18% (95% CI: 0.12%-0.24%). The contamination rate of manually condensed platelets was significantly higher than that of apheresis platelet concentrates (0.28% vs 0.17%, P<0.01). No significant difference in platelet contamination rates was found between eastern and central regions (0.21% vs 0.15%, P>0.01). The contamination rate of aerobic bacteria was higher than that of anaerobic bacteria (0.11% vs 0.06%, P<0.01). Publication bias analysis indicated robust results, and sensitivity analysis showed minimal impact of excluding individual studies on the overall conclusion. Conclusion: Although the platelet contamination rate in China is generally low, significant differences exist across collection methods and regions.
4.Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Lu XUE ; Tiancai CHANG ; Jiacheng GUI ; Zimu LI ; Heyu ZHAO ; Binqian ZOU ; Junnan LU ; Mei LI ; Xin WEN ; Shenghua GAO ; Peng ZHAN ; Lijun RONG ; Liqiang FENG ; Peng GONG ; Jun HE ; Xinwen CHEN ; Xiaoli XIONG
Protein & Cell 2025;16(8):705-723
Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp domain. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
Nipah Virus/chemistry*
;
Cryoelectron Microscopy
;
Viral Proteins/genetics*
;
RNA-Dependent RNA Polymerase/genetics*
;
Phosphoproteins/genetics*
;
Humans
;
Models, Molecular
;
Protein Binding
5.Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation.
Hang ZHAO ; Xin MA ; Hao WANG ; Xiao-Jie DING ; Le KUAI ; Jian-Kun SONG ; Zhan ZHANG ; Dan YANG ; Chun-Jie GAO ; Bin LI ; Mi ZHOU
Journal of Integrative Medicine 2025;23(3):309-319
OBJECTIVE:
To assess the safety and topical efficacy of prim-O-glucosylcimifugin (POG) and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis (AD).
METHODS:
The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Subsequently, the impact of POG on the differentiation of cluster of differentiation (CD) 4+ T cell subsets, including T-helper type (Th) 1, Th2, Th17, and regulatory T (Treg), was examined through in vitro experiments. Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms. Furthermore, the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD. The protein and transcript levels of inflammatory markers, including cytokines, lymphocyte-specific protein tyrosine kinase (Lck) mRNA, and LCK phosphorylation (p-LCK), were quantified using immunohistochemistry, RT-qPCR, and Western blot analysis.
RESULTS:
POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4 (Il4) and Il13 mRNA. In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells, whereas it exerted negligible influence on the differentiation of Th1, Th17 and Treg cells. Network pharmacology identified LCK as a key therapeutic target of POG. Moreover, the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver, kidney or spleen tissues. POG significantly reduced the levels of Il4, Il5, Il13, and thymic stromal lymphopoietin (Tslp) mRNA in the AD mice. Concurrently, POG enhanced the expression of p-LCK protein and Lck mRNA.
CONCLUSION
Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation. Please cite this article as: Zhao H, Ma X, Wang H, Ding XJ, Kuai L, Song JK, Zhang Z, Yang D, Gao CJ, Li B, Zhou M. Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation. J Integr Med. 2025; 23(3): 309-319.
Dermatitis, Atopic/drug therapy*
;
Animals
;
Humans
;
Cell Differentiation/drug effects*
;
Phosphorylation/drug effects*
;
Mice
;
Th2 Cells/drug effects*
;
Keratinocytes/drug effects*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Calcitriol/analogs & derivatives*
6.Not Available.
Letian SONG ; Shenghua GAO ; Bing YE ; Mianling YANG ; Yusen CHENG ; Dongwei KANG ; Fan YI ; Jin-Peng SUN ; Luis MENÉNDEZ-ARIAS ; Johan NEYTS ; Xinyong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica B 2024;14(1):87-109
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
7.Analysis of the Relationship between Serum miR-873 and miR-138-5p Expression and Immune Microenvironment and Prognosis in Patients with Non-small Cell Lung Cancer
Jie LIU ; Lingling YANG ; Qiuxia CHENG ; Zhan GAO
Journal of Modern Laboratory Medicine 2024;39(1):23-28
Objective To investigate the relationship between serum micro RNA(miRNAs)-873 and micro RNA-138-5p expression and tumor immune microenvironment(TIME)and prognosis in patients with non-small cell lung cancer(NSCLC).Methods A total of 108 NSCLC patients(NSCLC group)and 65 healthy volunteers(control group)who were admitted to Ba'nan Hospital Affiliated to Chongqing Medical University from February 2019 to February 2021 were selected.Real-time quantitative fluorescence polymeric chain reaction(qRT-PCR)was used to detect the expression of miR-873 and miR-138-5p in serum,and multiple immunofluorescence staining was used to detect tumor immune microenvironment indicators.Regular follow-up was conducted after discharge.Pearson analyzed the correlation between the expression of miR-873 and miR-138-5p in serum and the TIME index,and Kaplan-Meier and COX proportional risk regression analyzed the relationship between miR-873 and miR-138-5p and the prognosis of NSCLC patients.Results Comparison with control group,the expressions of miR-873(1.02±0.23 vs 3.15±0.82)and miR-138-5p(1.21±0.26 vs 3.54±0.92)in serum of NSCLC group were decreased,and the differences were statistically significant(t=-25.426,-24.769,all P<0.05).The expressions of serum miR-873 and miR-138-5p of patients with low-to-moderate differentiation in TNM stages Ⅲ to Ⅳ were lower than those with highly differentiated patients in TNM stages Ⅰ to Ⅱ(t=9.615,10.253;6.889,3.361,all P<0.05).The expressions of miR-873 and miR-138-5p in serum were negatively correlated with the values of PD-1,PD-L1,CD4 and CD8 H(r=-0.418~-0.673,all P<0.05).The OS survival rate of NSCLC patients with low expression of miR-873 and miR-138-5p was lower than that of those with high expression of miR-873 and miR-138-5p(Log-Rankχ2=4.724,5.607,P<0.05).TNM stage Ⅲ~Ⅳ was a risk factor for poor prognosis in patients with NSCLC(P<0.05),and miR-873 and miR-138-5p were protective factors(P<0.05).Conclusion The expressions of miR-873 and miR-138-5p in serum of NSCLC patients are down-regulated,which is related to TIME and low survival rate.
8.The characteristic analysis of lipid metabolism and intestinal flora in platinum-resistant ovarian cancer at stage Ⅲ-Ⅳ based on the theory of"tumour toxicity"in traditional Chinese medicine
Haili JIANG ; Yingquan YE ; Die HU ; Rui SHENG ; Chaozheng GAO ; Shuqi ZHAN ; Mei ZHANG ; Ting WANG
Acta Universitatis Medicinalis Anhui 2024;59(10):1863-1870
Objective To compare the differences in lipid metabolism between platinum-resistant and platinum-sensitive ovarian cancer patients at stage Ⅲ-Ⅳ,to analyze the differential intestinal flora using 16S rRNA sequen-cing,and to explore the associations among intestinal flora,lipid metabolism characteristics and platinum resistance in ovarian cancer.Methods Patients diagnosed with ovarian cancer at stage Ⅲ-Ⅳ through surgical pathology were selected,including a platinum-resistant group(11 cases)and a platinum-sensitive group(11 cases).The differences in lipid metabolism between the two groups were compared.The differences in gut microbiota between the two groups were investigated using fecal 16S rRNA sequencing.The association among gut microbiota,lipid metabolism characteristics,and platinum resistance in ovarian cancer was analyzed.Results Significant differ-ences were observed in lipid metabolism-related indicators[total cholesterol(TC),high-density lipoprotein choles-terol(HDL-C),non-high-density lipoprotein cholesterol(n-HDL),low-density lipoprotein cholesterol(LDL-C),apolipoprotein(B)]between the two groups,with higher levels in the platinum-resistant group.The Shannon in-dex(P=0.008 3)and Simpson index(P=0.008 2)both showed higher diversity of gut microbiota in platinum-resistant ovarian cancer patients compared to the platinum-sensitive group.However,based on OTUs species clus-tering and relative abundance statistics,certain bacterial abundances differed significantly between the groups.Spe-cies such as Parabacteroides,Akkermansia,Blautia,Lachnoclostridium,Fusicatenibacter,and Megamonas had sig-nificantly higher abundances in the platinum-sensitive ovarian cancer group,and Akkermansia(a lipid metabolism-related bacterial group)was the most prevalent.Conclusion The platinum-resistant group of ovarian cancer ex-hibits significantly higher levels of lipid metabolism and gut microbiota diversity compared to the platinum-sensitive group.This suggests that the increase in lipid metabolism levels and fecal microbiota diversity may be associated with the development of platinum resistance.However,certain microbial taxa are reduced in abundance in the plat-inum-resistant group,such as the distinct Akkermansia genus(a lipid metabolism-related microbial community),which may serve as one of the factors inducing platinum-resistance in ovarian cancer.
9.The role of endoplasmic reticulum stress in regulating macrophage immune response in liver diseases
Yiyun GAO ; Xinyu ZHAN ; Haoming ZHOU
Organ Transplantation 2024;15(6):889-894
Endoplasmic reticulum stress refers to a cellular stress response triggered when cells are stimulated,which is manifested as the disruption of endoplasmic reticulum homeostasis and dysfunction in various pathological conditions,resulting in the accumulation of a large number of misfolded and unfolded proteins within the endoplasmic reticulum and an imbalance of calcium ions.Macrophages are the most abundant immune cells in the liver and play an important role in maintaining liver homeostasis and various liver diseases.Recent studies have confirmed that the unfolded protein response caused by endoplasmic reticulum stress plays an important role in regulating macrophage immune response.This article reviews the mechanisms of endoplasmic reticulum stress regulating macrophage immune response and its role in liver diseases such as ischemia-reperfusion injury during organ transplantation,liver fibrosis,and hepatocellular carcinoma,in order to deepen the understanding of the mechanism of macrophage immune regulation and provide new ideas for research and interventional treatment related to liver diseases.
10.Deep mining of healthy blood metagenomics and phageomes
Lin ZHU ; Qiqi WANG ; Yulian XU ; Yang HUANG ; Zhan GAO ; Miao HE
Chinese Journal of Blood Transfusion 2024;37(10):1091-1100
Objective To explore the presence and potential interactions of microbes and bacteriophages in the blood of healthy individuals by employing in-depth bioinformatics mining to analyze the structure and function of the blood microbi-ome ecosystem.Methods Blood plasma samples from 1 600 voluntary blood donors collected at Mianyang Central Blood Station from 2012 to 2018 were subjected to DNA extraction and library construction.High-throughput sequencing was con-ducted using the Illumina HiSeq 4500 platform,followed by extensive bioinformatics analysis.Microbial abundance in blood samples was analyzed using metagenomic analysis software such as Bowtie2,Trimmomatic and Kraken.Subsequent phage-ome analysis included sequence quality control,assembly,identification,clustering and functional annotation using software such as Megahit,geNomad,CheckV and eggNOG-mapper.Phylogenetic trees,species annotation and host analysis and pre-diction for the identified blood bacteriophages were constructed using iTOL,BLAST and PhaBOX software.Results Met-agenomic sequencing identified microbes across 36 phyla,151 orders,338 families,338 genera and 3 757 species in the plasma samples.At the species level,the most abundant species included Bacillus cereus,Lactobacillus murinus,L.johnso-nii,Faecalibacterium prausnitzii,B.thuringiensis,L.reuteri,Cutibacterium acnes,Dietzia sp.JS16-p6b,Mycoplasma hyo-rhinis,M.hyopneumoniae and Staphylococcus aureus.Through phageome analysis,202 viral Operational Taxonomic Units(vOTUs)were identified,revealing 24 types of bacteriophages.Host analysis using the viral host database completed mat-ches for 15 potential bacteriophage hosts,including Stenotrophomonas maltophilia,Rhodoferax lacus,Pseudoalteromonas marina,Thalassotalea loyana,Vibrio alginolyticus,V.tasmaniensis,V.vulnificus,Pseudomonas sp.,Agrobacterium sp.ST15.13/040,Enterococcus gallinarum,Flavobacterium sp.,Thermotoga naphthophila,Chryseobacterium sp.RU33C,L.acidipiscis and Neisseria mucosa.Conclusion The study of the healthy human blood microbiome and phageome reveals the presence of microbes and phages in the blood,which may have profound impacts on human health.


Result Analysis
Print
Save
E-mail