Objective To synthesize antimicrobial bioceramic using chitosan and calcium phosphate cements mixed with ceftriaxone sodium. Methods The bioceramic was synthesized through the hardening of chitosan liquid combined with calcium phosphate cements and cefiriaxone sodium.The released ceftriaxone sodium was studied according to the linear equation between UV-VIS absorbance to concentration.The in vitro bactefiostatic effect of the chosen bioceramic was investigated via the microbiological method.The model of rats'contaminated bone defect were deployed to study the antimicrobial performance of the bioceramic. Results The best synthesis condition was chosen at:0.1g calcium phosphate cements and 10.4 mg ceftriaxone sodium combined with 2.4 ml hardening liquid C.then keeping the mixture at 60℃ and 100%humidity for 24 h.In vitro release of the resulting antimicrobial bioceramic remained stable,while that of ceftriaxone sodium lasted for a week,higher than the minimal inhibitory concentration(MIC) of Staphylococcus aureus.As proved by the WBC number and tissue sectioning,a lighter inflammatory response of treatment group was observed as compared with the control group. Conclusion The antimicrobial bioceramic combined with chitosan and ceftriaxone sodium shows promising antimicrobial performance.