1.HPLC Fingerprint of Yanhuanglian Injections
Yuanxiu LUO ; Dongxu WEN ; Shoujun JIANG ; Jinian JIANG ; Youcheng XU ; Peide XIE ; Xianglin ZENG
Chinese Traditional and Herbal Drugs 1994;0(07):-
Objective To establish the HPLC fingerprint for the quality control of Yanhuanglian Injections.Methods HPLC Chromatography method was used.The conditions included a Shim-pack CLC-ODS column(250 mm?6.0 mm,5 ?m),the gredient elution was adopted with acetonitrile-buffer solution(1∶1),the detection wavelength was at 285 nm,and the flow rate was 1.0 mL/min.The Operating Standard of Similarty Evaluation System for Chromatographic Fingerprint of Chinese Materia Medica(Version 2004A)was used to calculate.Results Similarity of 13 batches of injections was over 0.95,the fingerprint of Yanhuanglian Injections was established,and 12 common peaks were indicated.Conclusion This method can be applied to the quality control of Yanhuanglian Injections.
2.Andrographolide regulates SLC7A11/GPX4 axis in ferroptosis to attenuate intestinal injury in sepsis
Ming HUANG ; Yixin ZHANG ; Guodong CAO ; Youcheng ZENG ; Liang LIN ; Xiaoyue WANG ; Qinghong CHENG
Acta Universitatis Medicinalis Anhui 2023;58(12):2094-2100
Objective To investigate whether Andrographolide(AG)can alleviate intestinal injury in sepsis by ac-tivating the SLC7A11/GPX4 axis in ferroptosis.Methods Forty rats were randomly divided into sham group(sham group),sepsis group(CLP group),AG low,medium and high dose groups(5,10 and 20 mg/kg).HE staining was used to observe the pathological changes of Intestinal tract.ELISA method was used to determine Inter-leukin 6(IL-6),tumour necrosis factor α(TNF-α),intestinal fatty acid binding protein(I-FABP),D-lactate content.The mechanism of ferroptosis was explored with AG high dose group(AG20 group),forty rats were ran-domly divided into sham group,CLP group,ferroptosis inhibitor(Fer-1)group,AG20+Fer-1 group.HE staining and transmission electron microscopy were used to observe the pathological changes of Intestinal tract.The kits were used to determine oxidative stress MDA,GSH levels and Fe3+content.Western blot was used to detect the protein levels of solute carrier family 7 member 11(SLC7A11),glutathione peroxidase 4(GPX4),and ferritin heavy poly-peptide 1(FTH-1).Results Compared with the sham group,the CLP group showed severe morphological damage to the small intestine,with significantly higher levels of inflammation,I-FABP and D-lactate(all P<0.05),the AG group reversed these changes in a concentration-dependent manner(all P<0.05).Compared with the CLP group,the AG20 and Fer-1 groups showed improved pathological damage to the small intestine,with lower levels of MDA and Fe3+and higher levels of GSH,SLC7A11,GPX4 and FTH-1 protein expression increased(all P<0.05),and pathological injury and oxidative stress were reduced in the AG20+Fer-1 group,and SLC7A11,GPX4 and FTH-1 protein expression increased more significantly(all P<0.05).Conclusion The mechanism by which AG attenuates intestinal injury in sepsis may be related to SLC7A11/GPX4 axis activation in ferroptosis.
3.H2S attenuates sepsis-induced cardiomyopathy by regulating the Xc -/ GPX4 pathway in ferroptosis
Guodong Cao ; Feifei Deng ; Yuhan Zhao ; Youcheng Zeng ; Liang Lin ; Lichun Guo ; Xiqing Luo ; Yixin Zhang ; Ming Huang ; Qinghong Cheng
Acta Universitatis Medicinalis Anhui 2022;57(12):1959-1964
Objective :
To investigate whether NaHS,a hydrogen sulfide donor,can improve myocardial injury in sepsis by inhibiting oxidative stress and activating the Xc -/ GPX4 signaling pathway in ferroptosis.
Methods :
Lipopolysacc-haride(LPS) induced H9c2 in rat cardiomyocytes to form an in vitro model of myocardial injury in sep- sis,which was divided into Control group,LPS group and LPS + NaHS group.The kits were applied to detect the changes of cardiomyocyte viability,Fe2 + ,LDH and CK-MB,determine the levels of oxidative stress indexes GSH and MDA,detect the changes of cellular ROS and mitochondrial membrane potential levels by fluorescent probes, and detect the expression levels of ferroptosis regulatory proteins SLC7A11 and GPX4 by Western blot.
Results:
Compared with the Control group,H9c2 cell viability decreased,Fe2 + concentration increased ,GSH ,MDA and ROS levels increased,mitochondrial JC-1 monomer increased ,expression levels of ferroptosis regulatory proteins SLC7A11 and GPX4 decreased,and cell damage increased after LPS stimulation (P<0. 05) .Compared with the LPS group,NaHS attenuated LPS-induced H9c2 cell injury and elevated Fe2 + concentration,decreased the level of LPS-induced oxidative stress in H9c2 cells ,and increased the expression levels of ferroptosis regulatory proteins SLC7A11 and GPX4 (P<0. 05 ) .
Conclusion
The mechanism by which NaHS attenuates myocardial injury in sepsis may be related to the inhibition of oxidative stress and activation of the Xc -/ GPX4 signaling pathway in fer- roptosis.