1.Effect and mechanism of transplantation of human umbilical cord mesenchymal stem cells with overexpression of the Numb gene in treatment of cholestatic liver fibrosis
Shihao ZHANG ; Changqing ZHAO ; Mingyan YANG ; Feifei XING ; Wei LIU ; Gaofeng CHEN ; Jiamei CHEN ; Ping LIU ; Yongping MU
Journal of Clinical Hepatology 2026;42(1):80-89
ObjectiveTo investigate the effect and mechanism of transplantation of human umbilical cord mesenchymal stem cell (hUC-MSC) with overexpression of the Numb gene in the treatment of cholestatic liver fibrosis (CLF). MethodsThe technique of lentiviral transfection was used to induce the overexpression of the Numb gene in hUC-MSC (hUC-MSCNumb-OE), and hUC-MSC transfected with empty vector (hUC-MSCOE-EV) was used as negative control. Bile duct ligation (BDL) was performed to establish a rat model of CLF, and then the rats were randomly divided into BDL group, hUC-MSC group, hUC-MSCOE-EV group, and hUC-MSCNumb-OE group, while a sham-operation group was also established. The rats in the intervention groups were given a single splenic injection of the corresponding cells after BDL, and samples were collected at the end of week 4. Related indicators were measured, including serum biochemistry, liver histopathology, the content of hydroxyproline (Hyp) in the liver, hepatic stellate cell activation, ductular reaction, liver regeneration, and the expression levels of key molecules in the Numb-p53 signaling axis. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the BDL group, the hUC-MSC group and the hUC-MSCOE-EV group had significant reductions in the levels of serum biochemical parameters (aspartate aminotransferase, gamma-glutamyl transpeptidase, total bile acid, total bilirubin, and direct bilirubin), liver fibrosis markers (the content of Hyp and the expression levels of alpha-smooth muscle actin, tumor necrosis factor-α, and transforming growth factor-beta 1), and ductular reaction markers (the expression levels of CK7 and CK19) (all P <0.05), and compared with the hUC-MSCOE-EV group, the hUC-MSCNumb-OE group had significantly greater improvements in the above indicators (all P <0.05). In addition, compared with the hUC-MSCOE-EV group, the hUC-MSCNumb-OE group had significant improvements in the expression levels of liver regeneration-related markers (albumin and hepatocyte nuclear factor 4α) and the molecules associated with the Numb-p53 signaling axis (Numb, pNumb, Mdm2, and p53) (all P <0.05). ConclusionOverexpression of the Numb gene can enhance the therapeutic effect of hUC-MSC on CLF, possibly by activating the Numb-PTBL-p53-HNF4α axis, promoting the hepatic differentiation of hUC-MSCs and subsequently enhancing liver regeneration.
2.Association of serum exosomal miR-122-5p with the prognosis of hepatic confluent necrosis and fibrosis in patients with chronic hepatitis B
Quanwei HE ; Ran XU ; Wei HAN ; Sihao WANG ; Yan CHEN ; Yongping YANG
Journal of Clinical Hepatology 2025;41(5):888-899
ObjectiveTo investigate the association of serum exosomal microRNAs (miRNAs) with hepatic inflammatory injury and histological outcomes in patients with chronic hepatitis B (CHB). MethodsPeripheral serum samples were collected from six healthy adults and six patients with CHB, and size exclusion chromatography was used to extract exosomes. Small RNA sequencing and transcriptomic analysis were used to identify the serum exosomal miRNAs associated with liver inflammatory injury and fibrosis, and quantitative real-time PCR was used for validation in a mouse model of acute liver injury induced by lipopolysaccharide/D-galactosamine, a rat model of liver fibrosis induced by carbon tetrachloride, and 84 CHB patients undergoing liver biopsy twice before and after treatment. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; an analysis of variance was used for comparison between multiple groups, and the Tukey test was used for further comparison between two groups. The Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the Kruskal-Wallis H test was used for comparison between multiple groups, and the Dunn test was used for further comparison between two groups. The chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups. The univariate and multivariate Logistic regression analyses were used to investigate influencing factors. ResultsAbnormal expression of serum exosomal miR-122-5p was observed in patients with CHB, and it was downregulated in patients with confluent necrosis and advanced fibrosis. In the mouse model of acute liver injury and the rat model of liver fibrosis, compared with the control group, the model group had a significant reduction in the expression level of miR-122-5p in the liver (P=0.048 and 0.014), and compared with the patients with mild liver injury, the patients with severe confluent necrosis and advanced fibrosis showed a significant reduction in the expression level of miR-122-5p in liver tissue (P<0.05). Among the 84 CHB patients, the patients with severe hepatic confluent necrosis or advanced liver fibrosis had a significantly lower expression level of serum exosomal miR-122-5p than those with mild liver injury (P<0.001 and P=0.003). The multivariate Logistic regression analysis showed that the expression level of miR-122-5p was an independent influencing factor for confluent necrosis (odds ratio [OR]=0.001, 95% confidence interval [CI]: 0.000 — 0.037, P=0.005) and liver fibrosis degree (OR=0.568, 95%CI: 0.331 — 0.856, P=0.019). In addition, compared with the patients with low expression of miR-122-5p, the patients with high expression of miR-122-5p before treatment had a significantly higher reversal rate of liver fibrosis after 72 weeks of antiviral therapy (64.3% vs 38.1%, P=0.029). ConclusionSerum exosomal miR-122-5p in CHB patients is closely associated with the progression of hepatic confluent necrosis and fibrosis, and the reduction in the expression level of miR-122-5p may aggravate hepatic confluent necrosis, promote the progression of fibrosis, and affect the histological outcome of CHB patients after antiviral therapy.
3.Distribution characteristics of bacterial communities in central air-conditioning ventilation systems of a Grade 3A hospital in Shanghai based on 16S rRNA sequencing
Jun NI ; Haiyun ZHANG ; Jian CHEN ; Lijun ZHANG ; Yongping LIU ; Xiaojing LI ; Yiming ZHENG ; Liping ZHANG
Journal of Environmental and Occupational Medicine 2025;42(6):732-739
Background A diverse cohort of patients and susceptible individuals congregate in healthcare facilities, where exposure to pathogenic microorganisms associated with respiratory infectious diseases constitutes a significant risk factor for cross-infection. Central air-conditioning ventilation systems improve some indoor environment indicators while exacerbating the risk of transmission of respiratory infectious diseases. Objective To investigate the distribution characteristics of microbial communities in the central air-conditioning ventilation systems of hospitals, providing a scientific basis for the selection of microbial indicators in hygiene standards for hospital central air-conditioning ventilation systems and for hospital risk early warning systems. Methods In October 2023, two central air-conditioning ventilation systems were selected from a Grade 3A hospital in Shanghai: one was an all-air air-conditioning system serving the waiting area on the ground floor, and the other was a fan coil plus fresh air system serving the outpatient area on the third floor. Samples from four different components of the ventilation systems—air outlets, filters, surface coolers, and condensate trays—were collected for high-throughput sequencing of the 16S rRNA gene to analyze bacterial communities. Alpha-diversity and beta-diversity analyses were performed to investigate the microbial community composition and diversity characteristics of the hospital central air-conditioning ventilation systems. Functional analysis was conducted to determine the relative abundance of bacterial functions in these systems.Results A total of 528 operational taxonomic units (OTUs) were identified, encompassing 20 bacterial phyla, 37 classes, 79 orders, 123 families, and 240 genera. The analysis revealed that the bacterial community was predominantly composed of Proteobacteria, Gemmatimonadates, Bacteroidetes, and Actinobacteria. The diversity analysis indicated that bacterial community richness and diversity were highest in the condensate trays, while no statistically significant differences (P > 0.05) were observed in the bacterial community composition among the air outlets, filters, and surface coolers. The functional analysis showed that the bacterial communities in the central air-conditioning ventilation systems primarily exhibited chemoheterotrophic, oxidative energy-dependent heterotrophic, and ureolytic functional characteristics. Conclusion The dominance of Proteobacteria suggests that this phylum exhibits strong adaptability in the central air-conditioning ventilation systems, possibly related to its ability to survive and reproduce under varying environmental conditions. The diversity analysis indicates that the condensate tray is a critical area for bacterial proliferation in the central air-conditioning ventilation systems. The similarity in environmental conditions among the air outlets, filters, and surface coolers result in similar bacterial community structures. The functional analysis reveals that the bacterial communities possess robust energy conversion and metabolic capabilities, potentially contributing to processes such as organic matter decomposition and nitrogen cycling within the central air-conditioning ventilation systems.
4.Natural product mediated mesenchymal-epithelial remodeling by covalently binding ENO1 to degrade m6A modified β-catenin mRNA.
Tianyang CHEN ; Guangju LIU ; Sisi CHEN ; Fengyuan ZHANG ; Shuoqian MA ; Yongping BAI ; Quan ZHANG ; Yahui DING
Acta Pharmaceutica Sinica B 2025;15(1):467-483
The transition of cancer cells from epithelial state to mesenchymal state awarded hepatocellular carcinoma (HCC) stem cell properties and induced tumorigenicity, drug resistance, and high recurrence rate. Reversing the mesenchymal state to epithelial state by inducing mesenchymal-epithelial remodeling could inhibit the progression of HCC. Using high-throughput screening, chrysin was selected from natural products to reverse epithelial-mesenchymal transition (EMT) by selectively increasing CDH1 expression. The target identification suggested chrysin exerted its anti-HCC effect through covalently and specifically binding threonine 205 (Thr205) of alpha-enolase (ENO1). For the first time, we revealed that ENO1 bound β-catenin mRNA, and recruited YTHDF2 to identify the m6A modified β-catenin in the 3'-UTR region to degrade β-catenin mRNA. Eventually, the CDH1 gene expression was improved through the regulation of β-catenin mRNA. ENO1/β-catenin mRNA interaction might be a promising target for cellular plasticity reprogramming. Moreover, chrysin could mediate mesenchymal‒epithelial remodeling through increasing degradation of β-catenin mRNA by promoting the binding of ENO1 and β-catenin mRNA. To the best of our knowledge, chrysin is the first reported small molecule inducing β-catenin mRNA degradation through binding to ENO1. The water-soluble derivative of chrysin may be a natural product-derived lead compound for circumventing metastasis, recurrence, and drug resistance of HCC by mediating mesenchymal‒epithelial remodeling.
5.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
6.A quinolinyl analog of resveratrol improves neuronal damage after ischemic stroke by promoting Parkin-mediated mitophagy.
Qingqi MENG ; Yan MI ; Libin XU ; Yeshu LIU ; Dong LIANG ; Yongping WANG ; Yan WANG ; Yueyang LIU ; Guoliang CHEN ; Yue HOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):214-224
Ischemic stroke (IS) is a prevalent neurological disorder often resulting in significant disability or mortality. Resveratrol, extracted from Polygonum cuspidatum Sieb. et Zucc. (commonly known as Japanese knotweed), has been recognized for its potent neuroprotective properties. However, the neuroprotective efficacy of its derivative, (E)-4-(3,5-dimethoxystyryl) quinoline (RV02), against ischemic stroke remains inadequately explored. This study aimed to evaluate the protective effects of RV02 on neuronal ischemia-reperfusion injury both in vitro and in vivo. The research utilized an animal model of middle cerebral artery occlusion/reperfusion and SH-SY5Y cells subjected to oxygen-glucose deprivation and reperfusion to simulate ischemic conditions. The findings demonstrate that RV02 attenuates neuronal mitochondrial damage and scavenges reactive oxygen species (ROS) through mitophagy activation. Furthermore, Parkin knockdown was found to abolish RV02's ability to activate mitophagy and neuroprotection in vitro. These results suggest that RV02 shows promise as a neuroprotective agent, with the activation of Parkin-mediated mitophagy potentially serving as the primary mechanism underlying its neuroprotective effects.
Animals
;
Ubiquitin-Protein Ligases/genetics*
;
Mitophagy/drug effects*
;
Resveratrol/analogs & derivatives*
;
Neuroprotective Agents/pharmacology*
;
Humans
;
Neurons/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Ischemic Stroke/genetics*
;
Male
;
Quinolines/pharmacology*
;
Mice
;
Fallopia japonica/chemistry*
;
Mitochondria/metabolism*
;
Reperfusion Injury/metabolism*
;
Rats
;
Mice, Inbred C57BL
;
Disease Models, Animal
7.The clinical value of visual evoked potential in assessing visual pathway of visual hallucinations in Parkinson disease
Xiang LI ; Qilin ZHANG ; Fei CHEN ; Hao GUI ; Yongping DAI
Chinese Journal of Nervous and Mental Diseases 2024;50(5):257-262
Objective This research was to evaluate the integrity of visual pathways in patients with Parkinson disease(PD)by visual evoked potential(VEP),especially those with visual hallucinations.Methods A total of 76 PD patients were enrolled in this study.According to the presence or absence of visual hallucinations,they were divided into two groups:24 patients with visual hallucinations and 52 patients without visual hallucinations.At the same time,22 sex-and age-matched healthy controls were selected.All subjects underwent VEP test,and Unified Parkinson's Disease Rating Scale(UPDRS),Hoehn&Yahr stage(H-Y stage)and Mini-mental State Examination(MMSE)were performed for PD patients.Results The latencies of N75,P100 and N135(88.26±10.47)ms,(118.48±8.53)ms,(144.71±9.48)ms were significantly longer in PD patients with visual hallucinations than in those without visual hallucinations[(79.00±6.96)ms,(108.60±7.01)ms,(135.95±8.21)ms](P<0.001).However,the amplitudes of N75-P100 and N135-P100[4.35(2.73,7.30)μV]、[6.40(4.15,9.90)μV]were significantly lower in PD patients with visual hallucinations than in those without visual hallucinations[7.10(5.28,9.98)μV]、[9.05(6.30,12.60)μV](P<0.001,P=0.037).Correlation analysis showed that P100 latency was positively correlated with H-Y stage,UPDRS-I,UPDRS-II,and UPDRS-III scores(r=0.537,P=0.007),(r=0.635,P=0.001),(r=0.594,P=0.004)and(r=0.558,P=0.005)in PD visual hallucinations group.Conclusion The integrity of the visual pathway is impaired in PD patients with visual hallucinations.As the progression of the disease,the impairment of visual pathway may be further deteriorated,which may extend beyond the upper pathways of visual pathway to the brain.
8.Interventional effect of bone marrow mesenchymal stem cell transplantation with different doses of X-ray irradiation induced hepatic injury in mice
Yue LIANG ; Lan LUO ; Tianyu CHENG ; Gaofeng CHEN ; Wei LIU ; Yongping MU ; Jiamei CHEN ; Ping LIU
Chinese Journal of Hepatology 2024;32(11):1019-1027
Objective:To investigate the interventional effect of bone marrow mesenchymal stem cell (BMMSC) transplantation with different doses of X-ray irradiation induced hepatic injury in mice.Methods:Eighteen female C57BL/6J mice were randomly divided into 0, 2, and 3 Gy irradiation groups and 0, 2, and 3 Gy transplantation groups. The irradiation group was used as the control and injected with an equal volume of culture medium. The mice in the transplantation group were irradiated with different doses of X-ray irradiation, and BMMSCs were intravenously infused into the bone marrow. The mice were sacrificed for sampling at the end of the 21st day. Mice body weight changes were recorded daily. The changes in the content of peripheral blood lymphocytes, red blood cells, platelets, and hemoglobin were detected by an automatic blood tester. The morphological changes in mice liver tissues were observed by hematoxylin-eosin staining. The serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by a biochemical analyzer. The reduced glutathione contents in liver tissue were detected by the microplate method. The malondialdehyde content in liver tissue was detected by thiobarbituric acid. The content of total superoxide dismutase (T-SOD) in liver tissue was detected by the hydroxylamine method. The expression of the F4/80 protein in liver tissue was detected by the immunohistochemistry method. The protein expression of nuclear transcription factor erythroid 2 related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in liver tissue was determined by the western blotting method. The mRNA expression of NLRP3, IL-6, and Nrf2 in liver tissue was detected by a real-time quantitative polymerase chain reaction. The multiple-group comparisons were analyzed by factorial analysis of variance. The inter-group comparisons were analyzed by the LSD method for statistical analysis.Results:The contents of peripheral blood lymphocytes, erythrocytes, platelets, and hemoglobin were significantly decreased in the 3 Gy irradiation group than the 0 Gy irradiation group ( P<0.05), while the activities of serum ALT and AST were significantly increased ( P<0.05). The malondialdehyde content, F4/80 protein expression level, nucleotide-binding domain and leucine-rich repeats, nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3), and interleukin 6 mRNA expression levels were significantly increased in liver tissue, while the contents of T-SOD and glutathione, Nrf2 and HO-1 protein expression levels, and Nrf2 mRNA expression level in liver tissue were significantly decreased ( P<0.05). The contents of peripheral blood lymphocytes, red blood cells, platelets, and hemoglobin were significantly increased in the 3 Gy transplantation group than the 3 Gy irradiation group ( P<0.05), while the activities of serum ALT and AST were significantly decreased ( P<0.05). The malondialdehyde content, F4/80 protein expression level, NLRP3 and interleukin-6 mRNA expression levels in liver tissue were significantly decreased ( P<0.05), while the content of T-SOD and glutathione, Nrf2 and HO-1 protein expression levels, and Nrf2 mRNA expression level in liver tissue were significantly increased ( P<0.05). Conclusion:X-ray irradiation at a dose of 3 Gy can induce liver oxidative damage in mice. BMMSC transplantation can improve X-ray irradiation-induced liver oxidative damage in mice, and its mechanism of action may be related to the regulation of the Nrf2/HO-1 pathway.
9.Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice
Yongping LUO ; Jiaju ZHONG ; Qunmei YAO ; Zhengxiang GENG ; Chonggui CHEN ; Chengmin YU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(11):801-806
Objective:To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice.Methods:In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett- t test. Results:The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant ( P<0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant ( P<0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant ( P<0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant ( P<0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant ( P<0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances ( P<0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased ( P<0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased ( P<0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased ( P<0.05) . Conclusion:Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.
10.Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice
Yongping LUO ; Jiaju ZHONG ; Qunmei YAO ; Zhengxiang GENG ; Chonggui CHEN ; Chengmin YU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(11):801-806
Objective:To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice.Methods:In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett- t test. Results:The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant ( P<0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant ( P<0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant ( P<0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant ( P<0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant ( P<0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances ( P<0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased ( P<0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased ( P<0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased ( P<0.05) . Conclusion:Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.

Result Analysis
Print
Save
E-mail