1.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
2.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
3.Analysis of Animal Models of Autoimmune Thyroiditis Based on Clinical Characteristics of Traditional Chinese and Western Medicine
Sifeng JIA ; Zhuo ZHANG ; Yuyu DUAN ; Keqiu YAN ; Xinhe ZUO ; Yang LI ; Yong ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):235-243
ObjectiveAutoimmune thyroiditis (AIT) is a complex and immune-mediated disorder, with no established treatment protocol. Both Western and traditional Chinese medicine (TCM) focus on the pathogenesis and treatment of AIT. This study evaluated the clinical consistency of existing AIT animal models based on the diagnostic criteria of both Western and TCM, using a novel evaluation method. Additionally, it proposed recommendations and future prospects for improving these models. MethodsA comprehensive literature review was conducted on existing AIT animal models, using databases and the diagnostic criteria of both Western and TCM. Core and accompanying symptoms of these models were scored based on the diagnostic criteria of both Western and TCM, and clinical consistency was assessed. ResultsMice are the primary experimental animals used in AIT modeling. Modeling methods include vaccine immunization, iodine induction, heterologous thyroid antigen immunization, and a combination of high iodine water and antigen immunization. The average consistency of clinical syndromes based on TCM and Western medicine is 40%, 60%, 54%, and 63%, with the highest consistency observed in the combined high iodine water and antigen immunization model. Pathological models based on TCM are less common, with the liver-stagnation-spleen-deficiency rat model showing high clinical consistency. While most models are designed according to Western medical theory, meeting the surface and structural effectiveness criteria of Western medicine. However, there is a lack of fine-tuning and clear differentiation of TCM syndromes. ConclusionCurrent AIT syndrome-disease combination animal models primarily reflect the pathological features of Western medicine, with limited integration of TCM syndromes. Future research should aim to combine the syndrome characteristics of TCM with the pathological features of Western medicine, creating multi-factor and dynamic syndrome-disease models. Such models would better facilitate an experimental platform that conforms to the theories of TCM, providing more comprehensive support and guidance for the pathogenesis and treatment strategies of AIT.
4.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
5.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
6.Pathogenesis and treatment of "inflammation cancer transformation" of ulcerative colitis based on "Kenang" theory.
Jia-Kang XIE ; Xiao-Ning XU ; Feng-Ting AI ; Shao-Xi LI ; Yun AN ; Xuan GONG ; Yong CAO
China Journal of Chinese Materia Medica 2025;50(8):2298-2304
Ulcerative colitis(UC) is a recurrent, chronic, nonspecific inflammatory bowel disease. The longer the course of the disease, the higher the risk of cancerization. In recent years, the incidence and mortality rates of colon cancer in China have been increasing year by year, seriously threatening the life and health of patients. Therefore, studying the mechanism of "inflammation cancer transformation" in UC and conducting early intervention is crucial. The "Kenang" theory is an important component of traditional Chinese medicine(TCM) theory of phlegm and blood stasis. It is based on the coexistence of phlegm and blood stasis in the body and deeply explores the pathogenic syndromes and characteristics of phlegm and blood stasis. Kenang is a pathological product formed when long-term Qi stagnation leads to the internal formation of phlegm and blood stasis, which is hidden deep within the body. It is characterized by being hidden, progressive, and difficult to treat. The etiology and pathogenesis of "inflammation cancer transformation" in UC are consistent with the connotation of the "Kenang" theory. The internal condition for the development of UC "inflammation cancer transformation" is the deficiency of healthy Qi, with Qi stagnation being the key pathological mechanism. Phlegm and blood stasis are the main pathogenic factors. Phlegm and blood stasis accumulate in the body over time and can produce cancer toxins. Due to the depletion of healthy Qi and a weakened constitution, the body is unable to limit the proliferation and invasion of cancer toxins, eventually leading to cancer transformation in UC. In clinical treatment, the focus should be on removing phlegm and blood stasis, with syndrome differentiation and treatment based on three basic principles: supporting healthy Qi to strengthen the body's foundation, resolving phlegm and blood stasis to break up the Kenang, and regulating Qi and blood to smooth the flow of energy and resolve stagnation. This approach helps to dismantle the Kenang, delay, block, or even reverse the cancerization process of UC, reduce the risk of "inflammation cancer transformation", improve the patient's quality of life, and provide new perspectives and strategies for early intervention in the development of colon cancer.
Humans
;
Colitis, Ulcerative/immunology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Cell Transformation, Neoplastic
7.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
8.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
9.Research progress in mechanisms of kidney-tonifying traditional Chinese medicine in promoting healing of osteoporotic fractures.
Jun WU ; Ou-Ye LI ; Ken QIN ; Xuan WAN ; Wang-Bing XU ; Yong LI ; Jia-Wei ZHONG ; Yong-Xiang YE ; Rui XU
China Journal of Chinese Materia Medica 2025;50(15):4166-4177
Osteoporotic fractures(OPF) refer to the fractures caused by minor violence in the state of osteoporosis, seriously threatening the life and health of elderly patients. Drug and surgical therapies have limitations such as single targets, diverse adverse reactions, and poor prognosis. Kidney-tonifying traditional Chinese medicine(TCM) has good potential in the treatment of OPF. TCM can promote the healing of OPF by promoting angiogenesis in the early stage of bone healing, promoting osteogenic differentiation of bone marrow mesenchymal stem cells in the stage of bone repair, maintaining the balance of osteogenic and osteoclastic system in the stage of bone remodeling, and regulating the oxidative stress responses throughout the process of OPF healing. TCM can alleviate the pathological state of osteoporosis and promote fracture healing in OPF patients via multiple pathways and targets, demonstrating the advantages and potential of biphasic regulation.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Osteoporotic Fractures/metabolism*
;
Animals
;
Fracture Healing/drug effects*
;
Medicine, Chinese Traditional
;
Kidney/metabolism*
;
Osteogenesis/drug effects*
10.Mechanism exploration and basic research on the repair of diabetic foot ulcer.
Hong-Rui WANG ; Kang WU ; Jia-Dong ZHANG ; Yong HU ; Xian LI
China Journal of Orthopaedics and Traumatology 2025;38(9):964-968
Diabetic foot ulcer (DFU) is one of the common chronic complications in diabetic patients. Its course is complex and the therapeutic effect is limited, which seriously affects the quality of life of patients. In recent years, significant progress has been made in the research on the mechanism of DFU wound repair. Studies have found that dysregulation of the inflammatory microenvironment, vascular dysfunction, obstruction of re-epithelialization, insufficient collagen deposition, and formation of wound biofilms are the core factors affecting healing. Intervention strategies targeting these mechanisms have become research hotspots. For instance, hydrogel scaffolds could provide an appropriate healing microenvironment, immune regulation strategies could promote inflammation resolution and tissue remodeling, and stem cell exosomes and growth factors have shown good potential in cell migration, angiogenesis, and matrix remodeling. Various natural compounds, such as components from Chinese herbal medicines, are also applied in diabetic foot ulcers. And it demonstrates excellent anti-inflammatory and restorative capabilities. However, existing research still faces obstacles in clinical translation, such as the immaturity of individualized treatment strategies and the difficulty of animal models in simulating complex clinical situations. By systematically summarizing the latest research progress on the repair mechanism of DFU, it is expected to provide theoretical support for precise treatment.
Humans
;
Diabetic Foot/drug therapy*
;
Wound Healing
;
Animals

Result Analysis
Print
Save
E-mail