Objective:
To investigate the in vitro and in vivo effects of 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy against oral squamous cell carcinoma (OSCC) and preliminarily explore the possible mechanisms.
Methods:
SCC25 cells were divided into the control group (5-ALA of 0 mg/L) and the experimental group (5-ALA of 10, 25, 50, 100 and 150 mg/L). The production of protoporphyrin Ⅸ (PpⅨ) induced by 5-ALA in SCC25 cells was detected using the flow cytometry. SCC25 cells were divided into the control group (5-ALA of 0 mg/L), lazer alone group, 5-ALA alone group (5-ALA of 100 mg/L) and the 5-ALA combined with laser irradiation group (5-ALA of 5, 10, 25, 50 and 100 mg/L), the cytotoxicity of 5-ALA combined with laser irradiation (wave length 635 nm, power density 87 mW/cm2 and laser dose 10.4 J/cm2) was evaluated in SCC25 cells using the methyl thiazolyltetrazolium assay (incubation times of 4, 8 and 12 h in each group) and the induction effect of combination treatment on the cell apoptosis was assessed by the flow cytometry (incubation time of 12 h in each group). The intracellular production of reactive oxygen species (ROS) triggered by 5-ALA combined with laser irradiation was determined using a fluorescence probe method (incubation time of 12 h in each group). A mouse OSCC xenograft model bearing SCC25 tumor was built, and the mice were divided into control group (saline), 5-ALA group (5-ALA of 50 mg/kg) and 5-ALA combined with laser irradiation group (5-ALA of 10, 25 and 50 mg/kg). Antitumor effect of 5-ALA combined with laser irradiation (wave length 635 nm, power density 158 mW/cm2 and laser dose 94.8 J/cm2) was further measured.
Results:
5-ALA induced the production of PpⅨ in SCC25 cells in a drug concentration (0-150 mg/L)-and incubation time (0-24 h)-dependent manner. When the 5-ALA concentration was 100 mg/L, the intracellular PpⅨ production was in a relatively stable state. Cell viability and apoptosis rate of 5, 10, 25, 50, 100 mg/L 5-ALA combined with laser irradiation are, respectively, (82.3±5.2)%, (3.13±0.38)%; (74.6±9.3)%, (5.38±0.55)%; (38.3±9.7)%, (17.97±2.72)%; (9.2±3.8)%, (24.47±3.37)%; (7.2±0.8)%, (43.01±5.96)%, which indicated that 5-ALA combined with laser irradiation notably inhibited the growth of SCC25 cells and also induced significant cell apoptosis compared with the control group [(96.3±6.0)%, (0.35±0.13)%, P<0.05]. After combination treatment (5-ALA of 5, 10, 25, 50 and 100 mg/L combined with laser irradiation, the mean fluorescence intensity of dichlorofluorescein is (1.46±0.12)×104, (2.16±0.30)×104, (3.57±0.34)×104, (81.70±13.05)×104, (113.00±7.35)×104, respectively, a large amount of ROS was produced in SCC25 cells compared with the control group [(0.96±0.15) ×104, P<0.05], which was in positive correlation with the intracellular PpⅨ content. 5-ALA (concentration of 10, 25 and 50 mg/kg) combined with laser irradiation greatly suppressed the tumor growth in SCC25 tumor-bearing mice compared to the control group (P<0.05).
Conclusions
5-ALA-mediated photodynamic therapy can trigger the generation of intracellular ROS that has significant cytotoxicity and apoptosis induction effect, and thus inhibit the tumor growth both in vitro and in vivo.