1.Feasibility of Automatic Treatment Planning in Intensity-modulated Radiotherapy of Nasopharyngeal Carcinoma.
Yinbo HE ; Longbin ZHANG ; Jianghong XIAO ; Baofeng DUAN
Journal of Biomedical Engineering 2015;32(6):1288-1293
Intensity-modulated radiotherapy planning for nasopharyngeal carcinoma is very complex. The quality of plan is often closely linked to the experience of the treatment planner. In this study, 10 nasopharyngeal carcinoma patients at different stages were enrolled. Based on the scripting of Pinnacle 9. 2 treatment planning system, the computer program was used to set the basic parameters and objective parameters of the plans. At last, the nasopharyngeal carcinoma intensity-modulated radiotherapy plans were completed automatically. Then, the automatical and manual intensity-modulated radiotherapy plans were statistically compared and clinically evaluated. The results showed that there were no significant differences between those two kinds of plans with respect to the dosimetry parameters of most targets and organs at risk. The automatical nasopharyngeal carcinoma intensity-modulated radiotherapy plans can meet the requirements of clinical radiotherapy, significantly reduce planning time, and avoid the influence of human factors such as lack of experience to the quality of plan.
Carcinoma
;
Feasibility Studies
;
Humans
;
Nasopharyngeal Neoplasms
;
radiotherapy
;
Radiometry
;
Radiotherapy Dosage
;
Radiotherapy Planning, Computer-Assisted
;
Radiotherapy, Intensity-Modulated
2.Advanced glycation end products modulate osteoclastic acidification by inhibiting the expression of V-ATPase a3 and CIC-7
Haixing WANG ; Ziqing LI ; Yinbo XIAO ; Ziji ZHANG ; Yangchun ZHANG ; Xing YANG ; Chaohong LI ; Puyi SHENG
Chinese Journal of Tissue Engineering Research 2017;21(12):1826-1832
BACKGROUND:The effect of advanced glycation end products (AGEs) on bone resorption is controversial. Our previous study has shown that bone resorption is significantly inhibited when AGEs present with pre-osteoclast cells RAW 264.7, while the effect of AGEs on osteoclastic acidification remains unknown. OBJECTIVE:To investigate the effect of AGEs on osteoclastic acidification and the underlying mechanism. METHODS:RAW 264.7 cells were induced by RANKL (15μg/L;normal group) to generate osteoclasts, and AGEs (50-400 mg/L;experimental group) or bovine serum albumin (100 mg/L;control group) were added at the beginning of the induction. The effect of AGEs on bone resorption was evaIuated by anaIyzing the area of bone resorption on the Osteo Assay Surface plates, and the effect of AGEs on osteoclastic acidification was evaluated by acridine orange staining. Furthermore, the expression levels of V-ATPase a3 and CIC-7 were detected to investigate the underlying mechanism. RESULTS AND CONCLUSION:The bone resorption area in the AGEs group was significantly decreased compared with the normal group (P<0.05). Acridine orange staining reveaIed that the red fluorescence (620 nm) intensity in the AGEs group was significantly decreased compared with the normal group (P<0.05), and this inhibitory effect became obvious with the increase of AGEs concentration. Immunocytochemistry, western blot assay and PCR findings showed that the expression levels of V-ATPase a3 and CIC-7 in the AGEs group were decreased significantly compared with the normal group (P<0.05). To conclude, AGEs exert inhibitory effect on osteoclastic acidification, probably by inhibiting the expression of V-ATPase a3 and CIC-7.
3.Advanced glycation end products influence osteoclast-induced bone resorption
Ziqing LI ; Haixing WANG ; Peiheng HE ; Guotian LUO ; Yinbo XIAO ; Shuai HUANG ; Xing LI ; Puyi SHENG ; Chaohong LI ; Dongliang XU
Chinese Journal of Tissue Engineering Research 2016;20(20):2907-2914
BACKGROUND:The effects of advanced glycation end products (AGEs) on osteoclast-induced bone resorption is controversial and the underlying mechanisms remain unclear. Most of the studies indicate that AGEs can enhance bone resorption, while some othersshowthe opposite effects.
OBJECTIVE:To investigate the effects of AGEs on osteoclast-induced inorganicmatrixdissolution and organic componentdegradation and the underlying mechanisms.
METHODS:RAW 264.7 cels were induced to generate osteoclasts,and AGEs (50-400 μg/mL) or control-bovine serum albumin (100 μg/mL) was added since the beginning of the induction. The effect of AGEs on bone resorption was evaluated by analyzing the area of resorption pits on the Osteo Assay Surface plates and the expression of cathepsin K. Furthermore, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cels, nuclei per osteoclasts and the expression of integrinανβ3were detected.
RESULTS AND CONCLUSION:The area of resorption pits and expression of cathepsin K in AGEs groups were significantly decreased compared withthecontrol group, and this inhibiting effect became more obvious with the increase of AGEs concentration. TRAP staining also showed that number of TRAP-positivemultinucleated celsand nuclei per osteoclast were significantly reduced in an AGE dose-dependent manner. Quantitative PCR revealed that the expression of integrin ανβ3decreased significantly with the extension of AGEs incubation time. These data indicate that AGEs can exert inhibitory effects on organic and inorganicmatrixdegradation induced by osteoclasts. The underlying mechanism may be involved in the inhibitory effects of AGEs on directed differentiation and cel fusion of osteoclast precursor cels, and migration and adhension of osteoclasts.
4.Enhanced cellulase production of Penicillium decumbens by knocking out CreB encoding a deubiquitination enzyme.
Guangqi ZHOU ; Jing LÜ ; Zhonghai LI ; Jingjing LI ; Mingyu WANG ; Yinbo QU ; Lin XIAO ; Shulin QIN ; Haitao ZHAO ; Ruirui XIA ; Xu FANG
Chinese Journal of Biotechnology 2012;28(8):959-972
Penicillium decumbens T. is an important filamentous fungus for the production of cellulases to effectively degrade lignocellulose for second generation biofuel production. In order to enhance the capability of Penicillium decumbens to produce cellulases, we constructed a creB (a deubiquitinating enzyme encoding gene) deletion cassette, and generated a creB knockout strain with homologous double crossover recombination. This mutation resulted in a detectable decrease of carbon catabolite repression (CCR) effect. The filter paper activity, endoglucanase activity, xylanase activity and exoglucanase activity of the deltacreB strain increased by 1.8, 1.71, 2.06 and 2.04 fold, respectively, when comparing with the parent strain Ku-39. A 2.68 fold increase of extracellular protein concentration was also observed. These results suggest that the deletion of creB results in CCR derepression. These data also suggest that CREB influences cellulase production of Penicillium decumbens. In generation, this study provides information that can be helpful for constructing cellulase hyper-producing strain.
Cellulase
;
biosynthesis
;
Endopeptidases
;
genetics
;
metabolism
;
Gene Knockout Techniques
;
Lignin
;
metabolism
;
Mutant Proteins
;
metabolism
;
Penicillium
;
enzymology
;
genetics
;
Recombination, Genetic
;
Ubiquitinated Proteins
;
genetics
;
Ubiquitination