1.Simultaneous Determination of Seven Kinds of Fluorescent White Agents in Mushroom by QuEChERS-UltraPerformance Liquid Chromatography-Tandem Mass Spectrometry
Xianchen ZHANG ; Rong LI ; Yanping ZHOU ; Yanna BO ; Jingli WANG ; Yiguang HU
Chinese Journal of Analytical Chemistry 2017;45(5):777-783
A method based on QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of seven kinds of fluorescent white agent residues in mushroom.After mixing with 10 mL of water, the sample was extracted with acidified acetonitrile, cleaned up by C18, primary secondary amine (PSA) and MgSO4.The separation of seven kinds of fluorescent white agents was performed on a C18 column with a gradient elution of acetonitrile and 0.1% acidified water as mobile phase.The target compounds were detected by electrospray ionization mass spectrometry in positive ion mode with multi reaction monitoring (MRM).Under the optimum conditions, the method had good linear relationship in the determination of the seven kinds of fluorescent white agents in a certain concentration range, with correlation coefficients greater than 0.991.Moreover, the limits of detection (S/N=3) were 0.05-0.4 μg/kg, the limits of quantitation (S/N=10) were 0.2-1.3 μg/kg, and the average recoveries for seven kinds of fluorescent white agent residues in msushroom were 70.1%-109.2%.In comparison with previous methods, the new procedure has characteristics of simple sample preparation and higher sensitivity.
2.Clinical Observation of Lamivudine in Combination with Adefovir Dipivoxil in the Treatment of Decompensated Cirrhosis due to Hepatitis B
Yuanwang QIU ; Lihua HUANG ; Taihong HU ; Hongyan ZHOU ; Hangyuan WU ; Yiguang LI
China Pharmacy 2001;0(08):-
0.05).At week 52,there was significant difference in the undetectable HBV DNA rate between group C and group B(P0.05),and the rate of drug resistant genotype was 21.9%(7/32)、0、0(P
3.3D-printed multifunctional wound dressing for combined radiation and wound injury
Wencheng JIAO ; Jing DAI ; Wenrui YAN ; Jintao SHEN ; Jinglu HU ; Yiguang JIN ; Lina DU
Chinese Journal of Tissue Engineering Research 2024;28(10):1562-1567
BACKGROUND:Combined radiation and wound injury appeared mainly in patients with tumor radiotherapy and nuclear radiation accidents.The radiation destroys the repair mechanism,resulting in delayed or prolonged wound healing.It still lacks an effective therapeutic strategy currently. OBJECTIVE:To prepare multifunctional wound dressings based on the multiple clinical symptoms of combined radiation and wound injury,which are designed to be antibacteria,promoted healing and analgesics. METHODS:Using levofloxacin,fibroin and lidocaine hydrochloride as raw materials,3D bioprinting technology was applied to prepare the multifunctional wound dressing.(1)The multifunctional dressing was placed on a fixed culture plate coated with Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa,and incubated at 37 ℃ overnight to detect the diameter of the antibacterial zone.(2)40 Kunming mice were randomly divided into trauma group,radiation and trauma model group,treatment group and positive drug group,with 10 mice in each group.Mice in the radiation and trauma model group,treatment group and positive drug group were irradiated by 60Co gamma rays.After 1 hour of radiation,a full-layer skin defect wound with a diameter of 1 cm was made on the back of each mouse in the four groups.Normal saline was applied to the wounds of the trauma group and the radiation and trauma model group.Trethanolamine cream was applied to the wounds of the positive drug group.Multifunctional dressing was applied to the wounds of the treatment group.The dressing was changed every 2 days,and the treatment was continued for 14 days.Wound healing rate and serum interleukin-6 level were measured at 3,7 and 14 days after wound modeling.14 days after the wound modeling,the skin tissue of the wound was obtained and received hematoxylin-eosin staining,Masson staining and cytokeratin-14 immunohistochemical staining. RESULTS AND CONCLUSION:(1)3D-printed multifunctional wound dressing had good antibacterial activity.The antibacterial zone diameters against Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa were(4.15±0.09),(4.18±0.23)and(4.35±0.13)cm,respectively.(2)With the extension of modeling time,the wound healed gradually.The wound healing rate of the treatment group and the positive drug group was higher than that of the radiation and trauma model group at 3,7 and 14 days after modeling(P<0.01,P<0.001).The wound healing rate of the treatment group was higher than that of the positive drug group.With the extension of modeling time,the serum interleukin level of mice increased first and then decreased.The serum interleukin level in the treatment group at 3,7 and 14 days after modeling was lower than that in the radiation and trauma model group.Hematoxylin-eosin staining and Masson staining exhibited that inflammatory cells infiltrated the granuloma tissue in the trauma group,and the dermal collagen fibers were densely arranged.The normal structure of epidermis and dermis was destroyed and inflammatory cells were infiltrated in the radiation and trauma model group.In the treatment group,normal skin mucosal tissue was observed,the epidermis was arranged closely,and the sweat glands,hair follicles and dermal collagen fibers were arranged regularly.In the positive drug group,the arrangement of epidermal layer was tight,and the arrangement of sweat glands,hair follicles and dermal collagen fibers was regular.Cytokeratin-14 immunohistochemical staining displayed that the epidermal tissue thickness in the treatment group was lower than that in the other three groups(P<0.01,P<0.001).(3)The results confirm that the 3D-printed multifunctional dressing has multiple functions of local anesthesia,anti-infection and promoting healing.
4.Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers.
Tongtong ZHANG ; Yanming CHEN ; Yuanyuan GE ; Yuzhen HU ; Miao LI ; Yiguang JIN
Acta Pharmaceutica Sinica B 2018;8(3):440-448
Lung cancer is the leading cause of cancer-related deaths. Traditional chemotherapy causes serious toxicity due to the wide bodily distribution of these drugs. Curcumin is a potential anticancer agent but its low water solubility, poor bioavailability and rapid metabolism significantly limits clinical applications. Here we developed a liposomal curcumin dry powder inhaler (LCD) for inhalation treatment of primary lung cancer. LCDs were obtained from curcumin liposomes after freeze-drying. The LCDs had a mass mean aerodynamic diameter of 5.81 μm and a fine particle fraction of 46.71%, suitable for pulmonary delivery. The uptake of curcumin liposomes by human lung cancer A549 cells was markedly greater and faster than that of free curcumin. The high cytotoxicity on A549 cells and the low cytotoxicity of curcumin liposomes on normal human bronchial BEAS-2B epithelial cells yielded a high selection index partly due to increased cell apoptosis. Curcumin powders, LCDs and gemcitabine were directly sprayed into the lungs of rats with lung cancer through the trachea. LCDs showed higher anticancer effects than the other two medications with regard to pathology and the expression of many cancer-related markers including VEGF, malondialdehyde, TNF-, caspase-3 and BCL-2. LCDs are a promising medication for inhalation treatment of lung cancer with high therapeutic efficiency.
5.Mechanisms and therapeutic drugs of high-altitude lung diseases
Yueqi HUANG ; Jinglu HU ; Qi LI ; Miao LI ; Fei XIE ; Lina DU ; Yiguang JIN
Journal of Pharmaceutical Practice 2022;40(4):289-295
The heavily harsh plateau environment including low pressure, hypoxia, cold, dryness and strong ultraviolet radiation, seriously threatens the physical and mental health of those who quickly enter the plateau area. Lungs are the sensitive organs for high altitude injury. High-altitude lung diseases include the acute high-altitude lung disease (i.e., high-altitude pulmonary edema), the chronic high-altitude lung disease (i.e., high-altitude pulmonary artery hypertension) and the high-altitude de-adapted reaction. This review summarizes the pathogenic mechanisms and the main therapeutic drugs of high-altitude lung diseases based on the recent research. Moreover, the related formulations and administration routes are also reviewed here. It will provide support and counsel for the diagnosis and treatment of high-altitude lung diseases.
6.Recent progress in drug delivery.
Chong LI ; Jiancheng WANG ; Yiguang WANG ; Huile GAO ; Gang WEI ; Yongzhuo HUANG ; Haijun YU ; Yong GAN ; Yongjun WANG ; Lin MEI ; Huabing CHEN ; Haiyan HU ; Zhiping ZHANG ; Yiguang JIN
Acta Pharmaceutica Sinica B 2019;9(6):1145-1162
Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015-2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.