1.Shashen Maidong Tang Enhances Efficacy of Chemotherapy in Mouse Model of Lewis Lung Cancer by Modulating JAK2/STAT3 Signaling Pathway
Lin YU ; Yaoyao WANG ; Limin LIU ; Zuowei HU ; Yanping ZHOU ; Shang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):1-10
ObjectiveTo predict the mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer via network pharmacology and validate the prediction results in animal experiments. MethodsThe potential mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer was predicted by network pharmacology, liquid chromatography-mass spectrometry (LC-MS), and molecular docking methods. C57/BL6 mice were assigned into normal, model, cisplatin, and Shasheng Maidong Tang+cisplatin groups. In addition to the normal group, the remaining groups were injected subcutaneously with 0.2 mL of 1×107 cells·mL-1 Lewis lung cancer cells to establish the Lewis lung cancer model. The daily gavage dose of Shasheng Maidong Tang was 3.58 g·kg-1, and the concentration of cisplatin intraperitoneally injected on every other day was 2 mg·kg-1. Drugs were administered for 14 d. The changes in the tumor volume and the rate of tumor suppression were monitored, and the tumor histopathological changes were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay was employed to measure the interleukin (IL)-6 and interferon (IFN)-γ levels in peripheral blood. Real-time PCR was performed to quantify the mRNA levels of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3) in the tumor tissue of mice. Western blot was employed to determine the protein levels of JAK2, STAT3, B-cell lymphoma-2 (Bcl-2), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and Pim-1 proto1 (PIM1) in the tumor tissue. Immunohistochemistry was employed to detect the expression of Bcl-2 and PIM1 in the tumor tissue. ResultsNetwork pharmacological predictions indicated that Shasheng Maidong Tang might enhance the efficacy of chemotherapy for lung cancer by regulating nitrogen metabolism, AGE-RAGE signaling pathway, cancer pathway, and JAK/STAT signaling pathway. The experimental results demonstrated that tumor volume in the cisplatin group and Shasheng Maidong Tang+cisplatin group was reduced compared with the model group, with statistically distinct differences observed on days 14, 17, 20 post modeling (P<0.05). Notably, the Shasheng Maidong Tang+cisplatin therapy further decreased tumor volume compared with the cisplatin group, showing marked reductions on days 17 and 20 (P<0.05), consistent with trends visualized in tumor volume comparison charts. The Shasheng Maidong Tang+cisplatin group exhibited higher tumor inhibition rate than the cisplatin group (P<0.05). Histopathological analysis via HE staining revealed that the tumors in the model group displayed frequent nuclear mitosis, densely arranged cells, hyperchromatic nuclei, and no necrosis. Cisplatin treatment induced partial necrosis and vacuolization, while the Shasheng Maidong Tang+cisplatin group exhibited extensive necrotic regions, maximal vacuolization, disarranged tumor cells, and minimal mitotic activity. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed elevated level of IFN-γ (P<0.01) and declined level of IL-6 (P<0.01) in the peripheral blood. Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented elevated level of IFN-γ (P<0.01) and lowered level of IL-6 (P<0.01) in the peripheral blood. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin groups showed down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level STAT1 (P<0.01). Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level of STAT1 (P<0.01). Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), and STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). Compared with the cisplatin group, Shasheng Maidong Tang+cisplatin group presented down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). The Bcl-2 and PIM1 expression results obtained by immunohistochemistry were consistent with those of Western blot. ConclusionShasheng Maidong Tang may enhance the efficacy of chemotherapy in the mouse model of Lewis lung cancer by regulating the JAK2/STAT3 signaling pathway.
2.Traditional Chinese Medicine Regulates Oxidative Stress to Prevent and Treat Osteoporosis: A Review
Hu YANG ; Yu ZHENG ; Chengming JIA ; Tong WANG ; Guangfei ZHANG ; Yaoyao JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):277-285
Osteoporosis is a common bone metabolic disease, which is mainly characterized by the decrease in the number of bone trabeculae and the destruction of bone tissue microstructure, leading to increased bone fragility and fracture risks. This disease is common in postmenopausal women, elderly men, diabetes patients, and obese people. Due to the lack of awareness to prevent bone losses and the limitations of bone mass measurement methods, osteoporosis is only concerned when there are serious complications, which imposes a heavy burden on both patients and medical resources. Oxidative stress refers to the excessive production of highly active molecules such as reactive oxygen species and reactive nitrogen in the body subjected to harmful stimuli, leading to the imbalance between the oxidative and antioxidant systems and causing oxidative damage. Studies have shown that oxidative stress can increase the generation and activity of osteoclasts and inhibit the differentiation of osteoblasts, thus playing a role in the occurrence and development of osteoporosis. Traditional Chinese medicine (TCM) is considered an effective antioxidant that can alleviate oxidative stress-induced osteoporosis by regulating a variety of signaling pathways. Studies have shown that TCM can alleviate oxidative stress and promote bone angiogenesis and osteogenesis by regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), nuclear factor-kappa B, and nuclear factor erythroid 2-related factor (Nrf2) signaling pathways. TCM alleviates oxidative stress and promotes osteogenesis by regulating the Nrf2, PI3K/Akt/mammalian target of rapamycin, and secreted glycoprotein Wnt/β-catenin signaling pathways. In addition, TCM regulates NF-κB, mitogen-activated protein kinase, and receptor activator of nuclear factor kappa B (RANK)/RANK ligand/osteoprotegerin signaling pathway to alleviate excessive bone resorption induced by oxidative stress. This paper systematically summarizes the literature on the prevention and treatment of osteoporosis by TCM or its active ingredients via the above-mentioned signaling pathways to reduce oxidative stress in recent years. It briefs the possible molecular mechanisms of oxidative stress regulation-related signaling pathways to cause osteoporosis. In addition, this paper discusses the effects and mechanisms of TCM on bone angiogenesis, osteogenesis, and bone resorption by reducing oxidative stress through the regulation of related signaling pathways, aiming to provide a theoretical basis for the research and clinical treatment of osteoporosis.
3.Mechanism of acupuncture on cerebral ischemia-reperfusion injury via p53/SLC7A11/GPX4 signaling pathway in rat models.
Qi WANG ; Ziwen HOU ; Yaoyao LIU ; Dan WEI ; Qingjie KONG ; Xia CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1099-1110
OBJECTIVE:
To explore the neuroprotective effect and underlying mechanism of Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) in the rat models of cerebral ischemia-reperfusion injury (CIRI) based on the p53 protein (p53)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway.
METHODS:
Of 102 male Wistar rats, 20 rats were randomly collected as a sham-operation group. Using a modified external carotid artery filament insertion method, CIRI models were prepared by occluding the middle cerebral artery in the rest rats. After modeling and excluding 1 non-successfully modeled rat and 1 dead one, the other modeled rats were randomized into a model group, an agonist group, an acupuncture group, and an acupuncture + agonist group, 20 rats in each one. Xingnao Kaiqiao acupuncture therapy was delivered in the rats of the acupuncture group and the acupuncture + agonist group. The acupoints included "Shuigou" (GV26), bilateral "Neiguan" (PC6), and "Sanyinjiao" (SP6) on the affected side. Electroacupuncture was attached to "Neiguan" (PC6) and "Sanyinjiao" (SP6) on the affected side, with dense-disperse wave, a frequency of 2 Hz/15 Hz and intensity of 1 mA. The intervention was delivered twice daily, 20 min each time and for 7 consecutive days. In the agonist group and acupuncture+agonist group, p53 agonist, COTI-2 was intraperitoneally injected (15 mg/kg), once daily for 7 consecutive days. Neurological deficit was evaluated using Zausinger's six-point scale. Cerebral infarction volume was quantified by triphenyl tetrazolium chloride (TTC) staining. Histopathological changes were observed using hematoxylin-eosin (HE) staining. Iron deposition was assessed by Prussian blue staining. Mitochondrial ultrastructure in the ischemic cortex was examined under transmission electron microscopy (TEM). Serum iron (Fe2+) was measured with chromometry. Malondialdehyde (MDA) and glutathione (GSH) levels in the ischemic hippocampus were determined using thiobarbituric acid and microplate assays, respectively. The mean fluorescence intensity of reactive oxygen species (ROS) in the ischemic cortex was analyzed by flow cytometry. The mRNA and protein expression of GPX4, SLC7A11, and p53 in the ischemic hippocampus were evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting, respectively.
RESULTS:
Compared with the sham-operated group, the model group exhibited the decrease in neurological deficit score (P<0.01), and the increase in cerebral infarction volume percentage (P<0.01). The changes of brain tissue were presented in extensive cellular necrosis, pyknotic and deeply-stained nuclei, and vacuolar degeneration. The iron deposition was elevated in cortex and hippocampus (P<0.01), mitochondrial membrane density increased, the cristae was broken or reduced, and the outer membrane ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were elevated (P<0.01) and the level of GSH was reduced (P<0.01). The mRNA and protein expression of GPX4 and SLC7A11 was reduced (P<0.01), while that of p53 rose (P<0.01). When compared with the model group, in the agonist group, the neurological deficit score was reduced (P<0.05), the percentage of infarction volume was higher (P<0.01), the histopathological damage was further exacerbated, and the percentage of iron deposition increased in the cortex and hippocampus (P<0.01). The mitochondrial quantity decreased, the membrane density increased, the mitochondrial cristae were broken or reduced, and the outer membrane was ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were higher (P<0.01, P<0.05) and the level of GSH was reduced (P<0.05). The mRNA and protein expression of GPX4 and SLC7A11 decreased (P<0.01, P<0.05), while that of p53 was elevated (P<0.01). Besides, in comparison with the model group, the neurological deficit score was higher in the acupuncture group and the acupuncture + agonist group (P<0.01, P<0.05), the percentage of cerebral infarction volume was lower in the acupuncture group (P<0.01), the pathological damage of brain tissue was alleviated in the acupuncture group and the acupuncture + agonist group, and the percentage of iron depositiondecreased in the cortex and hippocampus (P<0.01). The mitochondrial structure was relatively clear, the mitochondrial cristae were fractured or reduced mildly in the acupuncture group and the acupuncture + agonist group. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were lower (P<0.01) and the level of GSH was higher (P<0.01) in the acupuncture group. The mean fluorescence intensity of ROS were dropped (P<0.01) in the acupuncture + agonist group. The mRNA expression of GPX4 and SLC7A11 was elevated (P<0.01) and that of p53 was reduced (P<0.01, P<0.05) in either the acupuncture group or the acupuncture + agonist group; the protein expression of GPX4 and SLC7A11 rose (P<0.05, P<0.01) and that of p53 was dropped (P<0.01) in the acupuncture group; and the protein expression of p53 was also lower in the acupuncture + agonist group (P<0.05). When compared with the agonist group, in the acupuncture + agonist group, neurological deficit score increased (P<0.01), the percentage of cerebral infarction volume decreased (P<0.01), the pathological brain tissue damage was reduced, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was relatively clear and the cristae broken or reduced slightly; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were dropped (P<0.01), while the level of GSH increased (P<0.05); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01). In comparison with the acupuncture + agonist group, in the acupuncture group, the neurological deficit score increased (P<0.05), the percentage of cerebral infarction volume decreased (P<0.05), the pathological brain tissue damage was alleviated, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was normal in tendency; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were reduced (P<0.05), while the level of GSH rose (P<0.01); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao acupuncture can alleviate neurological damage in CIRI rats, which is obtained probably by inhibiting ferroptosis through p53/SLC7A11/GPX4 pathway.
Animals
;
Reperfusion Injury/metabolism*
;
Male
;
Acupuncture Therapy
;
Rats
;
Tumor Suppressor Protein p53/genetics*
;
Brain Ischemia/metabolism*
;
Rats, Wistar
;
Signal Transduction
;
Humans
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Disease Models, Animal
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
4.A novel TNKS/USP25 inhibitor blocks the Wnt pathway to overcome multi-drug resistance in TNKS-overexpressing colorectal cancer.
Hongrui ZHU ; Yamin GAO ; Liyun LIU ; Mengyu TAO ; Xiao LIN ; Yijia CHENG ; Yaoyao SHEN ; Haitao XUE ; Li GUAN ; Huimin ZHAO ; Li LIU ; Shuping WANG ; Fan YANG ; Yongjun ZHOU ; Hongze LIAO ; Fan SUN ; Houwen LIN
Acta Pharmaceutica Sinica B 2024;14(1):207-222
Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/β-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/β-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.
5.Construction of practice education system in speciality of rehabilitation therapy for undergraduate based on WHO rehabilitation competency framework
Yahui ZHANG ; Xiaodong ZHANG ; Yaoyao LIU ; Yujie YANG ; Chenglei FAN ; Xiangxia REN ; Na AN ; Qi WANG ; Zhongyan WANG ; Ming HUO
Chinese Journal of Rehabilitation Theory and Practice 2024;30(11):1248-1253
Objective To construct a high-quality practical teaching system of rehabilitation majors for undergraduate based on World Health Organization rehabilitation competence framework(RCF). Methods Using the principles and methods of RCF,the competency requirements for rehabilitation therapy were ana-lyzed and a practical teaching system suitable for undergraduate education in rehabilitation therapy was construct-ed. Results The rehabilitation practice education were constructed as practice courses,clinical practice and social service practice,and the practice education modules and objectives were discussed based on RCF. Conclusion A competency-oriented rehabilitation practice education system has been constructed based on RCF,includ-ing practice courses,clinical practice and social service practice.
6.Research progress on HEG1 in cardiovascular generation and tumor development
Yaoyao WANG ; Xinjuan YU ; Jiahui WANG ; Qinghai LI ; Wei HAN
Chinese Journal of Preventive Medicine 2024;58(1):136-140
Heart development protein with EGF-like domains 1 (HEG1) is a novel mucin-like membrane protein with a long O-glycosylation region and EGF domain. HEG1 plays critical roles in embryo development and cardiogenesis, and is closely related to the occurrence and progression of malignant tumors. Here this article demonstrates the research progress on HEG1 in cardiovascular formation and tumor development in recent years, to inspire new ideas for the pathogenesis, diagnosis and treatment of related diseases.
7.Research progress in mesenchymal stem cell and its secretions for radiation sickness treatment
Herui WANG ; Li MIAO ; Yaoyao CHEN ; Yongjun LIU ; Guangyang LIU
International Journal of Biomedical Engineering 2024;47(5):477-484
Mesenchymal stem cell (MSC) has been shown to attenuate injuries in a variety of radiation animal models and has been explored for the treatment of radiation-induced patients, due to its potent immunomodulatory and tissue repair capabilities. Based on its high safety and multiple biological functions, MSC is expected to be used for the treatment of radiation sickness. In this review, the research progress of MSC and its secretions in the treatment of radiation-induced injuries was summarized, such as skin injury, intestinal injury, brain injury, acute radiation syndrome of the hematopoietic system, lung injury, liver injury, and cardiac injury.
8.Screening and identification of tumor-specific T cell receptors from tumor infiltrating lymphocytes using colorectal cancer organoid model
Yaoyao MEI ; Yingming WANG ; Xiaojian HAN ; Meiying SHEN ; Ya LI ; Zhengqiang WEI ; Aishun JIN
Immunological Journal 2024;40(3):279-285
This study intends to establish a colorectal cancer(CRC)organoid model,expand and isolate CRC-reactive tumor-infiltrating lymphocytes(TILs),screen tumor-specific T cell receptors(TCRs)and perform functional verification,in order to provide a technological platform and research foundation for the clinical transformation of individualized adoptive T-cell immunotherapy for colorectal cancer.An organoid model derived from colon cancer patient tissues was constructed using in vitro 3D culture techniques,which then subjected to HE staining and immunohistochemistry for detecting morphological characteristics and representative molecular expression.Subsequently,CRC organoids were co-cultured with TILs for sorting reactive TILs using flow cytometry,and the characteristics of reactive TCR clones was analyzed through single T cell receptor gene cloning technology.Furthermore,the function of TCRs was verified through cytotoxicity experiments.Morphological analysis and representative molecules(CK20 and CDX2)expression indicated that there is high similarity between colorectal cancer organoids and patient tumors.In the in vitro expanded and cultured TILs,colorectal cancer-reactive T cells with upregulated CD137 expression and increased IFN-γ secretion were screened out successfully,among which TCR2-T cells demonstrated superior tumor reactivity and in vitro tumor killing function.In conclusion,a platform for screening and function validation of reactive TCRs based on CRC-Org has been established,providing a technological platform for the translational application of individualized T-cell therapy for colorectal cancer.
9.Digital-aided design and manufacture of a new open-window customized pallet accuracy and fitness study
Liaoliao WANG ; Yaoyao YANG ; Jiang WU
Journal of Practical Stomatology 2024;40(3):360-364
Objective:To design and fabricate a new open-window customized tray by newly developed digital software,and to eval-uate its accuracy and fitness.Methods:A matte metal model of a standard mandibular Ken's class Ⅱ dental defect was selected as the initial model,scanned by a desktop scanner and saved in STL format.The model inverted concave filling,tray edge line and support bracket were completed in tray design software;handles,overflow holes and occlusal dike structures were added to complete the tray design.3D printing technology was used to produce 10 pairs of new open-window customized pallets made of polyacrylic acid.The pal-lets were scanned and the data were imported into Geomagic software,the pallet tissue surface was taken as a common area,the pallet CAD data were aligned with the 3D scanning data,and the deviation between the two was mesured by 3D deviation analysis.The"pal-let-model"data was obtained by repositioning the pallet on the initial model and imported into Geomagic software,and the"initial model"and"pallet"data were aligned to the"pallet-model"and"pallet"data respectively.The"initial model"and"pallet"data were aligned to the"pallet-model"data,and the distance deviation between the pallet inner surface data and the initial model data was measured and analyzed.Results:The average deviation of the inner surface printing accuracy of the new windowed customized pallet from the overall RMS estimate(mm)of the design data was 0.140±0.021,that of the support bracket area 0.115±0.024,and that of the free end saddle base area 0.185±0.036,respectively.The average deviation of the average gap size(mm)between the in-ner surface of the pallet and the outer surface of the initial model was 0.998±0.042,that of the support bracket area 0.1 1 9±0.048,and that of the saddle-base area of the free end 0.989±0.082,respectively.Conclusion:The new pallet made by the newly developed software has good accuracy and suitability,and can be used for the fabrication of corrective impressions for free-end dental defects.
10.Design and fabrication of new removable partial dentures and their accuracy and suitability
Yaoyao YANG ; Tao WEN ; Liaoliao WANG ; Jiang WU
Journal of Practical Stomatology 2024;40(4):494-498
Objective:To design and manufacture removable partial dentures with a new configuration,and to evaluate their accuracy and suitability.Method:A structure with abutment tooth preparation was designed in the mesh structure of the bracket.The resin substrate of buccal and tissue surfaces was designed using a layered method.Selective laser melting(SLM),digital light processing(DLP)and CNC cutting techniques were used to produce a pure titanium new configuration removable local denture bracket,base res-in part and crown,respectively,followed by splicing and assembling the new removable partial denture configuration(Test group).The samples in control group was a traditional design removable partial denture bracket made by SLM technology,and the final denture was completed by conventional tooth placement and filling with glue.10 samples were included in each group.The accuracy and suita-bility of the sample were examined,data were statistically analyzed.Results:The accuracy(3D deviation,mm)of the test and control group was 0.153±0.019 and 0.153±0.011(P=0.978),the overall suitability(3D deviation,mm)of the 2 groups was 0.191±0.006 and 0.187±0.007(P=0.218),respectively.Conclusion:The configurtion is simplified and more feassible to design and manufac-ture removable partial denture with proper accuracy and suitability.

Result Analysis
Print
Save
E-mail