1.Preliminary application of intelligent three-dimensional ultrasound imaging of fetal cranial mid-sagittal view
Yan YI ; Yi XIONG ; Qi LIN ; Yang JIAO ; Jinfeng XU ; Yaoxian ZOU ; Muqing LIN
Chinese Journal of Ultrasonography 2015;24(3):246-248
Objective To describe an intelligent three-dimensional technique for automatic visualization of the fetal cranial mid-sagittal view to allow for the differential diagnosis of fetal midline anomalies.Methods Two hundred and twenty pregnant women with singleton pregnancies were imaged to display the mid-sagittal view of fetal head using a new 3D program (Smart MSP) developed by our team.Results The mid-sagittal view of the fetal head was successfully visualized in 190 normal cases (95%) and 18 abnormal cases (90%) by Smart MSP program.The total successful rate was 94.5% (208/220).Conclusions Smart MSP is a novel and feasible method for the automatic visualization of fetal cranial midsagittal plane and may become a potential tool for routinely screening the fetal midline anomalies.
2.Investigation on 90Sr level in offshore seawater and seafood therein around Sanmen nuclear power plant site and assessment of committed effective dose from 2015 to 2019
Yiyao CAO ; Dong ZHAO ; Shunfei YU ; Meibian ZHANG ; Hua ZOU ; Zhiqiang XUAN ; Zhongju LAI ; Yaoxian ZHAO ; Peng WANG ; Hong REN
Chinese Journal of Radiological Medicine and Protection 2021;41(4):288-292
Objective:To investigate and analyze the radioactivity level of 90Sr in offshore seawater and seafood therein around Sanmen nuclear power plant (NPP) and to estimate the annual committed effective dose to local population from ingestion of 90Sr in seafood from 2015 to 2019. Methods:From 2015 to 2019, the offshore seawater and 3 kinds of marine products grown locally in Sanmen and consumed by local residents were collected for measurement of the level of 90Sr radioactivity. The committed effective doses to the local population were estimated based on monitoring result and consumption data on seafood in Zhejiang offshore. Results:The radioactivity concentrations of 90Sr ranged from 2.4 to 4.1 mBq/L in the seawater, close to the natural radioacrive background level and from 6.7×10 -2 to 1.3 Bq/kg in seafood, lower than the standard values specified in the "Limited concentrations of radioactive materials in foods" (GB 14882-94). Annual committed effective dose to the local population from 90Sr attributable to consumption of seafood in Sanmen County from 2015 to 2019 were 2.2×10 -4-4.2×10 -4mSv, respectively, far lower than the worldwide committed effective dose result ing from internal exposure. Conclusions:From 2015 to 2019, the radioactivity concentration of 90Sr in seawater and seafood are stable, with neglectable dose burden to the local population.
3.Investigation on 90Sr and 137Cs activity concentrations in water in Hangzhou urban area from 2012 to 2020
Peng WANG ; Yiyao CAO ; Hong REN ; Lei ZHOU ; Hua ZOU ; Shunfei YU ; Yaoxian ZHAO ; Zhongjun LAI ; Zhiqiang XUAN
Chinese Journal of Radiological Medicine and Protection 2023;43(8):627-632
Objective:To investigate the activity concentrations of 90Sr and 137Cs in water in Hangzhou urban area. Methods:From 2012 to 2020, Qiantang River water as an important drinking water source, tap water as direct drinking water for residents, and West Lake water in tourists crowded area were selected forwater quality monitoring with respect to conctnts of 90Sr and 137Cs. The activity concentrations of 90Sr and 137Cs in water samples, as collected in wet and dry seasons resepectively, were determined by radiochemical analysis, with the 137Cs to 90Sr activity ratios obtained. Results:From 2012 to 2020, the activity concentrations of 90Sr and 137Cs in tap water were (2.0±1.1) - (7.4±0.4) mBq/L and (0.45±0.06) - (7.1±0.6) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.07 to 2.40. The activity concentrations of 90Sr and 137Cs in Qiantang River were (3.7±1.1) - (17.0±4.4) mBq/L and (0.28±0.01) - (15.0±4.5) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.03 to 0.90. The activity concentrations of 90Sr and 137Cs in West Lake water were (2.2±0.5) - (11.0±2.0) mBq/L and (0.32±0.04) - (7.9±1.9) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.05 to 1.20. Conclusions:The activity concentrations of 90Sr and 137Cs in water in Hangzhou urban area were at the background levels, lower than the concentration limits, 10 Bq/L both for 90Sr and 137Cs recommended by WHO in the 4 th edition of Guidelines for Drinking Water Quality.
4.Impact of water supply from Qiandao Lake on gross radioactivity level in drinking water in downtown Hangzhou
Hong REN ; Yiyao CAO ; Peng WANG ; Hua ZOU ; Shunfei YU ; Bing ZHU ; Dongxia ZHANG ; Zhiqiang XUAN ; Yaoxian ZHAO
Chinese Journal of Radiological Medicine and Protection 2022;42(6):438-442
Objective:To investigate the levels of gross radioactivity in drinking water in Hangzhou city before and after Qiandao Lake as the water source to the main urban area of Hangzhou.Methods:Since 2012, water samples were collected from water source, factory water and peripheral water in rainy and dry seasons, respectively, to determine their gross α and β activity concentrations for comparison and analysis.Results:The gross radioactivity levels in drinking water in Hangzhou are lower than the limits specified in the national standard "Standards for drinking water quality" (GB 5749-2006), without statistically significant difference for these water sources between the rainy and dry season ( P>0.05). The gross α(0.008±0.000)and gross β(0.034±0.013)levels in Qiandao lake were both less than those in Qiantang river ( Z=-3.235, -4.058, P<0.05), with significant difference ( Z=-2.181, -4.577, P<0.05). There was no significant difference in gross α and gross β in factory water and peripheral water before and after the operation of Qiandao Lake water supply project ( P>0.05). Conclusions:The gross radioactivity in drinking water in downtown Hangzhou are low from 2012 to 2020. The gross radioactivity levels in Qiandao Lake are lower than in the lower reaches of Qiantang river and Dongtiao steam. No impact was generated on radioactivity levels in drinking water after Qiandao lake supplied water to Hangzhou.
5.Investigation on total radioactivity in drinking water following operation of the second phase expansion project at Qinshan Nuclear Power Plant
Lei ZHOU ; Yiyao CAO ; Hong REN ; Peng WANG ; Hua ZOU ; Shunfei YU ; Yaoxian ZHAO ; Zhiqiang XUAN ; Zhongjun LAI ; Dongxia ZHANG
Chinese Journal of Radiological Medicine and Protection 2023;43(12):1003-1009
Objective:To investigate and analyze the level of the gross radioactivity, and its variation trend, in surrounding drinking water since the second phase expansion project at Qinshan Nuclear Power Plant was officially put into operation.Methods:From 2010 to 2022, the source water, factory water and tap water within 30 km of Qinshan Nuclear Power Plant were collected in the flood season (May) and dry period (October) every year. The total α and total β radioactivity concentrations in drinking water was measured and analyzed. The levels of total radioactivity in drinking water around different nuclear power plants in China and around non-nuclear power plant areas was compared.Results:The mean radioactivity concentrations of total α and total β were (0.021±0.019) and (0.204±0.058) Bq/L in source water, (0.010±0.005) and (0.185±0.056) Bq/L in factory water , and (0.012±0.007) and (0.170±0.058) Bq/L in tap water, respectively, all lower than the limits stipulated in the Sanitary Standards for Drinking Water. There were no significant differences in the monitoring result of betweem the three types of water samples both in the flood and dry periods ( P> 0.05). The total radioactivity level in drinking water around Qinshan Nuclear Power Plant site was close to that in drinking water around different nuclear power plants in China and around areas without nuclear power plants. Conclusions:Following the second phase of the expansion project officially being put into operation, the total α and β radioactivity level in drinking water around the Qinshan Nuclear Power Plant has been in a stable trend and lower than the guidance level given in national standard.