1.Current status of research on the mechanism of action of emodin in the prevention and treatment of chronic liver diseases
Yajie CHEN ; Xin WANG ; Yunjuan WU ; Ying SU ; Yuhan WANG ; Jinxue ZHANG ; Ning YAO ; Ying QIN ; Xiaoning ZUO
Journal of Clinical Hepatology 2026;42(1):228-234
Chronic liver diseases are a group of diseases in which the liver is subjected to a variety of injuries over a long period of time, resulting in irreversible pathological changes that last longer than 6 months. Emodin (EMO) is a natural anthraquinone derivative derived from Rheum officinale, and its pharmacological effect has been extensively studied, exhibiting a variety of biological properties and involving multiple signaling molecules and pathways. Western medicine or surgical treatment is currently the main treatment regimen for chronic liver diseases, and the advance in treatment is limited by various reasons such as side effects and high costs. Due to its natural origin and efficacy, EMO has unique advantages in the treatment of chronic liver diseases and has now become a research hotspot. This article summarizes the therapeutic effect of EMO on chronic liver diseases and its mechanism, in order to provide a certain scientific basis for the traditional Chinese medicine treatment of chronic liver diseases and the development of drugs in clinical practice.
2.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
3.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
4.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
5.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
6.Application of Targeted mRNA Sequencing in Fusion Genes Diagnosis of Hematologic Diseases.
Man WANG ; Ling ZHANG ; Yan CHEN ; Jun-Dan XIE ; Hong YAO ; Li YAO ; Jian-Nong CEN ; Zi-Xing CHEN ; Su-Ning CHEN ; Hong-Jie SHEN
Journal of Experimental Hematology 2025;33(4):1209-1216
OBJECTIVE:
To explore the application of targeted mRNA sequencing in fusion gene diagnosis of hematologic diseases.
METHODS:
Bone marrow or peripheral blood samples of 105 patients with abnormally elevated eosinophil proportions and 291 acute leukemia patients from January 2015 to June 2023 in the First Affiliated Hospital of Soochow University were analyzed and gene structural variants were detected by targeted mRNA sequencing.
RESULTS:
Among 105 patients with abnormally elevated eosinophil proportions, 6 cases were detected with gene structural variants, among which fusion gene testing results in 5 cases could serve as diagnostic indicators for myeloid neoplasms with eosinophilia. In addition, a IL3∷ETV6 fusion gene was detected in one patient with chronic eosinophilic leukemia, not otherwise specified. Among 119 patients with acute myeloid leukemia (AML), 38 cases were detected structural variants by targeted mRNA sequencing, accounting for 31.9%, which was significantly higher than 20.2% (24/119) detected by multiple quantitative PCR (P < 0.05). We also found one patient with AML had both NUP98∷PRRX2 and KCTD5∷JAK2 fusion genes. A total of 104 patients were detected structural variants by targeted mRNA sequencing in 172 cases with acute B-lymphoblastic leukemia who were tested negative by multiple quantitative PCR, with a detection rate of 60.5% (102/172).
CONCLUSION
Targeted mRNA sequencing can effectively detect fusion gene and has potential clinical application value in diagnosis and classificatation in hematologic diseases.
Humans
;
Hematologic Diseases/diagnosis*
;
RNA, Messenger/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Sequence Analysis, RNA
;
Leukemia, Myeloid, Acute/diagnosis*
7.CDK1-mediated phosphorylation of USP37 regulates SND1 stability and promotes oncogenesis in colorectal cancer.
Liang WU ; Can CHENG ; Ning ZHAO ; Liang ZHU ; Heng LI ; Jingwen LIU ; Yang WU ; Xi CHEN ; Hanhui YAO ; Lianxin LIU
Acta Pharmaceutica Sinica B 2025;15(4):1938-1955
Colorectal cancer (CRC) poses a severe global health challenge with high incidence and mortality rates. USP37 has been identified as the bona fide deubiquitinase of SND1, playing a critical role in stabilizing SND1, thereby augmenting its oncogenic potential. The interaction between USP37 and SND1 was confirmed through extensive proteomics, ubiquitinomics, and interactomics, underscoring their synergistic effects on CRC proliferation and metastasis. Additionally, CDK1 has emerged as a pivotal regulator of USP37, phosphorylating it at threonine 631 rather than serine 628, enhancing its deubiquitinase activity, and consequently stabilizing SND1 to drive CRC malignancy further. Histological analyses of human CRC samples linked the upregulation of CDK1 and USP37 with increased SND1 levels and poor patient prognosis. High-throughput virtual screening and subsequent experimental validation identified Dacarbazine as a pharmacological inhibitor of USP37, and its inhibition disrupted SND1 stability, hindering CRC cell proliferation and metastasis. This study reveals a novel and promising molecular mechanism driving CRC progression through the CDK1-USP37-SND1 axis, highlighting the clinical importance of targeting this pathway to improve patient outcomes.
8.Baicalin suppresses type 2 dengue virus-induced autophagy of human umbilical vein endothelial cells by inhibiting the PI3K/AKT pathway
Yao CHENG ; Yuanying WANG ; Feiyang YAO ; Pan HU ; Mingxian CHEN ; Ning WU
Journal of Southern Medical University 2024;44(7):1272-1283
Objective To investigate the effect of type 2 dengue virus(DENV-2)infection on autophagy in human umbilical vein endothelial cells(HUVECs)and the mechanism mediating the inhibitory effect of baicalin against DENV-2 infection.Methods Cultured HUVECs with DENV-2 infection were treated with different concentrations of baicalin,and the changes in autophagy of the cells were detected using transmission electron microscopy.Lyso Tracker Red staining was used to examine pH changes in the lysosomes of the cells,and the expressions of ATG5,beclin-1,LC3,P62,STX17,SNAP29,VAMP8,and PI3K/AKT signaling pathway-related proteins were detected by Western blotting.DENV-2 replication in the cells were evaluated using RT-qPCR.The differentially expressed proteins in DENV-2-infected HUVECs were identified by proteomics screening.Results Treatment with baicalin did not significantly affect the viability of cultured HUVECs.Proteomic studies suggested that the PI3K-AKT pathway played an important role in mediating cell injury induced by DENV-2 infection.The results of RT-qPCR demonstrated that baicalin dose-dependently inhibited DENV-2 replication in HUVECs and produced the strongest inhibitory effect at the concentration of 50 μg/mL.Transmission electron microscopy,Lyso Tracker Red staining,RT-qPCR,and Western blotting all showed significant inhibitory effect of baicalin on DENV-2-induced autophagy in HUVECs.DENV-2 infection of HUVECs caused increased cellular expressions of LC3 and P62 proteins,which were significantly lowered by treatment with LY294002(a PI3K inhibitor).Conclusion Baicalin inhibits DENV-2 replication in HUVECs and suppresses DENV-2-induced cell autophagy by inhibiting the PI3K/AKT signaling pathway.
9.The efficacy and safety of endoscopic submucosal tumor resection without labeling and submucosal injection for the treatment of gastric small gastrointestinal stromal tumors
Zhenguang CHEN ; Yao LUO ; Jinyuan YU ; Songyang WU ; Ning WU ; Zaiyuan YE
Journal of Chinese Physician 2024;26(8):1146-1150
Objective:To investigate the efficacy and safety of endoscopic submucosal tumor resection without labeling and submucosal injection (NMSI-ESE) in the treatment of gastric small gastrointestinal stromal tumors.Methods:A retrospective analysis was conducted on the clinical data of 49 patients diagnosed with gastric small gastrointestinal stromal tumors in the Department of Gastrointestinal Surgery at the Shulan (Hangzhou) Hospital from January 2019 to December 2023. Among them, 23 cases underwent NMSI-ESE and 26 cases underwent traditional endoscopic submucosal tumor resection (ESE). We compared the clinical and pathological characteristics, surgical time, tumor removal time, number of metal clips used, surgical costs, postoperative hospitalization time, and incidence of complications between two groups of patients.Results:Compared with the ESE group, the NMSI-ESE group had shorter surgical time [38.95(26.50, 53.25)min vs 47.30(38.50, 52.25)min, Z=-2.60, P=0.011], shorter tumor removal time [17.27(8.75, 24.50)min vs 27.08(18.75, 35.00)min, Z=-4.32, P<0.001], and lower surgical costs [3 308(3.190, 3 450)yuan vs 4 107(3 972, 4 232)yuan, Z=-20.95, P<0.001], fewer metal clips used [(3.86±0.91) vs (5.04±1.22), t=-4.00, P<0.001], and shorter postoperative hospitalization time [3.1(2.0, 4.0)d vs 3.5(3.0, 4.0)d, Z=-2.20, P=0.031], There was no statistically significant difference in R0 resection rate and postoperative complications (all P>0.05). During the follow-up period, both groups of patients had no tumor recurrence or metastasis. Conclusions:NMSI-ESE is safe and effective in treating small gastrointestinal stromal tumors, and can shorten surgical and hospitalization time, as well as reduce medical costs compared to traditional ESE.
10.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (

Result Analysis
Print
Save
E-mail