1.Staged Characteristics of Mitochondrial Energy Metabolism in Chronic Heart Failure with Heart-Yang Deficiency Syndrome and Prescription Intervention from Theory of Reinforcing Yang
Zizheng WU ; Xing CHEN ; Lichong MENG ; Yao ZHANG ; Peng LUO ; Jiahao YE ; Kun LIAN ; Siyuan HU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):129-138
Chronic heart failure (CHF) is a complex clinical syndrome caused by ventricular dysfunction, with mitochondrial energy metabolism disorder being a critical factor in disease progression. Heart-Yang deficiency syndrome, as the core pathogenesis of CHF, persists throughout the disease course. Insufficiency of heart-Yang leads to weakened warming and propelling functions, resulting in the accumulation of phlegm-fluid, blood stasis, and dampness. This eventually causes Qi stagnation with phlegm obstruction and blood stasis with water retention, forming a vicious cycle that exacerbates disease progression. According to the theory of reinforcing Yang, the clinical experience of the traditional Chinese medicine (TCM) master Tang Zuxuan in treating CHF with heart-Yang deficiency syndrome, and achievements from molecular biological studies, this study innovatively proposes an integrated research framework of "TCM syndrome differentiation and staging-mitochondrial metabolism mechanisms-intervention with Yang-reinforcing prescriptions" which is characterized by the integration of traditional Chinese and Western medicine. Heart-Yang deficiency syndrome is classified into mild (Stage Ⅰ-Ⅱ), severe (Stage Ⅲ), and critical (Stage Ⅳ) stages. The study elucidates the precise correlations between the pathogenesis of each stage and mitochondrial metabolism disorders from theoretical, pathophysiological, and therapeutic perspectives. The mild stage is characterized by impaired biogenesis and substrate-utilization imbalance, corresponding to heart-Yang deficiency and phlegm-fluid aggregation. Linggui Zhugantang and similar prescriptions can significantly improve the expression of peroxisome proliferator-activated receptor gamma co-activator-1α(PGC-1α)/silent information regulator 2 homolog 1 (SIRT1) and ATPase activity. The severe stage centers on oxidative stress and structural damage, reflecting Yang deficiency with water overflow and phlegm-blood stasis intermingling. At this stage, Zhenwu Tang and Qiangxin Tang can effectively mitigate oxidative stress damage, increase adenosine triphosphate (ATP) content, and repair mitochondrial structure. The critical stage arises from calcium overload and mitochondrial disintegration, leading to the collapse of Yin-Yang equilibrium. At this stage, Yang-restoring and crisis-resolving prescriptions such as Fuling Sini Tang and Qili Qiangxin capsules can inhibit abnormal opening of the mitochondrial permeability transition pore (MPTP), reduce cardiomyocyte apoptosis rate, and protect mitochondrial function. By summarizing the characteristics of mitochondrial energy metabolism disorders at different stages of CHF, this study explores the application of the theory of reinforcing Yang in treating heart-Yang deficiency syndrome and provides new insights for the clinical diagnosis and treatment of CHF.
2.Danhong Injection Regulates Ventricular Remodeling in Rat Model of Chronic Heart Failure with Heart-Blood Stasis Syndrome via p38 MAPK/NF-κB Signaling Pathway
Zizheng WU ; Xing CHEN ; Jiahao YE ; Lichong MENG ; Yao ZHANG ; Junyu ZHANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):149-159
ObjectiveTo explore the mechanism of ventricular remodeling mediated by the p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway in the rat model of chronic heart failure (CHF) with heart-blood stasis syndrome, as well as the intervention effect of Danhong injection. MethodsIn vivo experiment: SPF-grade male SD rats were assigned via the random number table method into 4 groups: Sham operation, model, captopril (8.8 mg·kg-1), and Danhong injection (6.0 mL·kg-1). The model of CHF with heart-blood stasis syndrome was established by abdominal aortic constriction, and the sham operation group only underwent laparotomy without constriction. All the groups were treated continuously for 15 days. The tongue color of rats was observed. Echocardiography, hemorheology, heart mass index (HMI), and left ventricular mass index (LVMI) were measured. Hematoxylin-eosin (HE) staining and Masson staining were performed to observe the pathological and fibrotic changes of the myocardial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), interleukin-6 (IL-6), angiotensin Ⅱ (AngⅡ), tumor necrosis factor-α (TNF-α), and Creactive protein (CRP) in the serum, as well as the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the myocardial tissue. Western blot was used to quantify the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue. In vitro experiment: H9C2 cardiomyocytes were treated with 1×10-6 mol·L-1 AngⅡ to establish a model of myocardial hypertrophy. H9C2 cardiomyocytes were allocated into normal, model, inhibitor + Danhong injection, Danhong injection (20 mL·L-1), and inhibitor (SB203580, 5 μmol·L-1) groups. CCK-8 assay was used to detect the viability of H9C2 cardiomyocytes. Rhodamine-labeled phalloidin staining was used to reveal the area of cardiomyocytes. Real-time PCR was performed to determine the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Western blot was used to assess the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65. ResultsIn vivo experiment: Compared with the sham operation group, the model group showed purplish-dark tongue with decreased R, G, B values of the tongue surface (P<0.01), increased whole blood viscosity (at low, medium, and high shear rates) (P<0.01), decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (P<0.01), increased left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), and left ventricular posterior wall thickness at end-diastole (LVPWd) (P<0.01), raised LVMI and HMI (P<0.01), and elevated levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). The HE and Masson staining of the myocardial tissue showed compensatory myocardial hypertrophy, fibrosis, and massive inflammatory cell infiltration in the model group. Additionally, the model group presented up-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). Compared with the model group, each administration group showed increased R, G, B values of the tongue surface (P<0.05, P<0.01), decreased whole blood viscosity (at low, medium, and high shear rates) (P<0.05, P<0.01), increased LVEF and LVFS (P<0.01), decreased LVIDd, LVIDs, and LVPWd (P<0.05, P<0.01), declined LVMI and HMI (P<0.05, P<0.01), and lowered levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). HE and Masson staining showed alleviated compensatory myocardial hypertrophy, reduced fibrosis, and decreased expression of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). In vitro experiment: When the concentration of Danhong injection reached 20 mL·L-1, the survival rate of H9C2 cardiomyocytes was the highest (P<0.01). Compared with the normal group, the model group showed up-regulated mRNA levels of ANP and BNP (P<0.01), increased relative cell surface area (P<0.01), and raised protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.01). Compared with the model group, each administration group showed down-regulated mRNA levels of ANP and BNP (P<0.01), reduced relative cell surface area (P<0.05, P<0.01), and down-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionDanhong injection can regulate ventricular remodeling through the p38 MAPK/NF-κB pathway, thereby exerting a protective effect on the rat model of CHF with heart-blood stasis syndrome.
3.Characterization and Application of Moisture Absorption Kinetics of Traditional Chinese Medicines Based on Double Exponential Model:A Review
Yanting YU ; Lei XIONG ; Yan HE ; Wei LIU ; Jing YANG ; Yao ZHANG ; Jiali CHEN ; Xiaojian LUO ; Xiaoyong RAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):340-346
Hygroscopicity research has long been a key focus and hot topic in Chinese materia medica(CMM). Elucidating hygroscopic mechanisms plays a vital role in formulation design, process optimization, and storage condition selection. Hygroscopic models serve as essential tools for characterizing CMM hygroscopic mechanisms, with various types available. The double exponential model is a kinetic mathematical model constructed based on the law of conservation of energy and Fick's first law of diffusion, tailored to the physical properties of CMM extracts. In recent years, this model has been extensively applied to simulate the dynamic moisture absorption behavior of CMM extracts and solid dosage forms under varying humidity conditions. It has revealed the correlation between moisture absorption kinetic parameters and material properties, offering a new perspective for characterizing the moisture uptake behavior of CMM. This paper systematically reviews the application progress of this model in the field of CMM, analyzes its advantages, disadvantages, and challenges in this domain, and explores its potential application trends in other fields. It aims to provide references for elucidating the moisture absorption mechanisms of CMM and researching moisture-proofing technologies, while also offering insights for its broader application in food and polymer materials.
4.Impact of height-desk-chair matching intervention on viewing distance of primary school students
ZHANG Yaxin*, YAO Yuan, FENG Mian, WU Yuxuan, CHEN Guoping, TAO Fangbiao, XU Shaojun
Chinese Journal of School Health 2026;47(1):51-54
Objective:
To compare the effects of height-desk-chair matching on the viewing distance of primary school students before and after intervention, so as to provide scientific basis for the hygiene management of desks and chairs.
Methods:
From April to June 2025, a random cluster sampling method was used to select 141 third grade students from three classes equipped with adjustable desks and chairs in a primary school in Hefei City for a height-desk-chair matching intervention study. The height of students desks and chairs was adjusted according to the standard height and height range specified in the Functional Sizes and Technical Requirements of Chairs and Tables for Educational Institutions (GB/T 3976-2014), with an intervention period of one week. Before and after the intervention, eye use data were measured by using the electronic smart device "Cloud Clip", while collecting data on vision data viewing distance, time spent using eyes at close range and outdoor time, desk and chair height, and physical examination. Linear regression analysis was used to investigate the factors related to viewing distance before the intervention of height-desk-chair matching, and a paired t-test was used to analyze the difference in viewing distance before and after the intervention. A mixed effects model was used to explore the effect of height desk and chair adaptation intervention on viewing distance.
Results:
The compliance rates for desk and chair adjustments before and after the intervention were 1.4% and 18.4%, respectively, with a statistically significant difference ( χ 2=22.84, P <0.01). The viewing distance increased from (30.48±5.01) cm before intervention to (32.06±5.75) cm post intervention, with a statistically significant difference ( t=4.57, P <0.01). The proportion of students meeting the viewing distance standard increased from 33.3% to 51.1%. The linear mixedeffects model results indicated that the association between height appropriate desk and chair interventions and viewing distance was statistically significant, regardless of whether covariates such as time spent using eyes at close range and outdoor time were adjusted ( β=-1.58, 95%CI = -2.25 to -0.91; β=-1.14, 95%CI =-1.85 to -0.43, both P <0.05).
Conclusion
Height adjusted desks and chairs, which can effectively increase the viewing distance for primary school students, has positive implications for improving healthy eye care behaviors among children and adolescents.
5.Mechanism of Xianfang Huomingyin in Treating Type Ⅲ Prostatitis Based on Biological Analysis and Animal Experiments
Yuqin ZHANG ; Wenliang YAO ; Mian YE ; Yuliang ZHOU ; Shenghui CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):62-71
ObjectiveTo explore the mechanism of Xianfang Huomingyin (XFHMY) in the treatment of type Ⅲ prostatitis (CP/CPPS) through network pharmacology, molecular docking, and animal experiments. MethodsThe traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database were used to screen and sort out the active ingredients and corresponding targets of XFHMY. The potential therapeutic targets of CP/CPPS were collected from online databases, such as the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DisGeNET. The potential core targets of XFHMY for treating CP/CPPS were further screened by constructing a protein-protein interaction (PPI) network and performing topological analysis. Meanwhile, the DAVID database was chosen to perform enrichment analysis on the intersection targets. On this basis, the AutoDock software was used for molecular docking, and the data was subsequently imported into the GraphPad Prism 8 software to generate a heat map. SD rats were divided into seven groups: A blank group, a sham operation group, a model group, low-, medium-, and high-dose XFHMY groups (3.645, 7.29, 14.58 g·kg-1), and a tamsulosin hydrochloride group (0.018 mg·kg-1). Hematoxylin-eosin (HE) staining was used to evaluate the pathological changes in prostate tissue. The inflammatory factor indicators of rats in each group were detected via enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative reverse transcription polymerase chain reaction (Real-time PCR) and Western blot were used to evaluate the mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and nuclear transcription factor-κB (NF-κB) p65 in prostate tissue. ResultsThe HE staining showed no significant signs of inflammatory cell infiltration in the prostate of the sham operation group compared to the blank group, while the model group had significantly inflammatory cell infiltration. The ELISA results showed that compared to the blank group, TNF-α, IL-1β, and COX-2 in the sham operation group had no significant differences. However, they were significantly higher in the model group (P<0.01), indicating successful CP/CPPS modeling in rats. Compared with the model group, the low-,medium-and high-dose XFHMY group and the tamsulosin hydrochloride group showed significant decreases in TNF-α, IL-1β, and COX-2 (P<0.05,P<0.01). The Real-time PCR analysis revealed that compared to the model group, the low-dose XFHMY group had reduced Akt and NF-κB p65 mRNA expression(P<0.05,P<0.01). In the medium-and high-dose XFHMY group and tamsulosin hydrochloride group, PI3K, Akt, and NF-κB p65 mRNA levels decreased significantly(P<0.05,P<0.01). Western blot analysis showed that compared to the model group, the low-dose XFHMY group had lower p-NF-κB p65/NF-κB p65 (P<0.05). The medium- and high-dose XFHMY group and the tamsulosin hydrochloride group showed significant decreases in p-PI3K/PI3K, p-Akt-ser473/Akt, p-Akt-thr308/Akt, and p-NF-κB p65/NF-κB p65 (P<0.01). ConclusionXFHMY may exert therapeutic efficacy on CP/CPPS by inhibiting the PI3K/Akt/NF-κB signaling pathway and reducing inflammatory responses. Additionally, NF-κB activation may be related to the activation of ser473 and thr308 sites.
6.Qualitative and Quantitative Analysis of Chemical Constituents in Gualou Niubangtang by UPLC-Q-TOF-MS/MS and HPLC
Yiyi ZHANG ; Jing YANG ; Yuqing CHENG ; Huimin GAO ; Jin QIN ; Li YAO ; Xiyang DU ; Raorao LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):179-187
ObjectiveThis paper aims to clarify the material basis of Gualou Niubangtang and establish a quantitative analysis method for its main constituents, providing a reference for the overall quality control of this preparation. MethodsThe constituents in the formula were systematically characterized based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Identification was performed by matching with the UNIFI 9.6 software and utilizing database platforms such as PubChem, ChemicalBook, and ChemSpider, combined with relevant literature reports. A quantitative analysis method for the seven main constituents in Gualou Niubangtang was established by using high performance liquid chromatography (HPLC). ResultsUPLC-Q-TOF-MS/MS analysis identified 155 constituents, including 69 flavonoids, 36 terpenoids, 23 phenylpropanoids, 8 phenylethanoid glycosides, and 19 other types of constituents. In the established quantitative analysis method, the seven main constituents showed good linearity within their respective linear ranges. The precision, repeatability, stability, and spike recovery all met the required standards. The results showed that the content ranges of geniposide, liquiritin, hesperidin, arctiin, baicalin, oroxylin A-7-O-β-D-glucuronide, and wogonoside in 15 batches of Gualou Niubangtang were 13.67-21.25, 1.20-7.64, 5.45-7.45, 22.97-33.51, 29.95-39.07, 2.58-4.80, and 6.56-9.31 mg·g-1, respectively. ConclusionThis study successfully characterizes and attributes multi-category constituents in Gualou Niubangtang, clarifying that its material basis is primarily composed of flavonoids, terpenoids, phenylethanoid glycosides, and phenylpropanoids. Furthermore, it enables the quantification of seven constituents within the formula. This work lays a foundation for research on the quality control, action mechanism, and clinical application of this formula.
7.Current status of research on the mechanism of action of emodin in the prevention and treatment of chronic liver diseases
Yajie CHEN ; Xin WANG ; Yunjuan WU ; Ying SU ; Yuhan WANG ; Jinxue ZHANG ; Ning YAO ; Ying QIN ; Xiaoning ZUO
Journal of Clinical Hepatology 2026;42(1):228-234
Chronic liver diseases are a group of diseases in which the liver is subjected to a variety of injuries over a long period of time, resulting in irreversible pathological changes that last longer than 6 months. Emodin (EMO) is a natural anthraquinone derivative derived from Rheum officinale, and its pharmacological effect has been extensively studied, exhibiting a variety of biological properties and involving multiple signaling molecules and pathways. Western medicine or surgical treatment is currently the main treatment regimen for chronic liver diseases, and the advance in treatment is limited by various reasons such as side effects and high costs. Due to its natural origin and efficacy, EMO has unique advantages in the treatment of chronic liver diseases and has now become a research hotspot. This article summarizes the therapeutic effect of EMO on chronic liver diseases and its mechanism, in order to provide a certain scientific basis for the traditional Chinese medicine treatment of chronic liver diseases and the development of drugs in clinical practice.
9.Validating Multicenter Cohort Circular RNA Model for Early Screening and Diagnosis of Gestational Diabetes Mellitus
Shuo MA ; Yaya CHEN ; Zhexi GU ; Jiwei WANG ; Fengfeng ZHAO ; Yuming YAO ; Gulinaizhaer ABUDUSHALAMU ; Shijie CAI ; Xiaobo FAN ; Miao MIAO ; Xun GAO ; Chen ZHANG ; Guoqiu WU
Diabetes & Metabolism Journal 2025;49(3):462-474
Background:
Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods:
High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results:
Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion
Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
10.Elevated Serum Amyloid A2 and A4 in Patients With Guillain–Barré Syndrome
Xiaoying YAO ; Baojun QIAO ; Fangzhen SHAN ; Qingqing ZHANG ; Yan SONG ; Jin SONG ; Yuzhong WANG
Journal of Clinical Neurology 2025;21(3):213-219
Background:
and Purpose Guillain–Barré syndrome (GBS) is an autoimmune-mediated disorder characterized by demyelinating or axonal injury of the peripheral nerve. Our aim is to determine whether serum amyloid A (SAA) is a biomarker of demyelinating injury and disease severity in patients with GBS.
Methods:
This study retrospectively enrolled 40 patients with either the demyelinating or axonal GBS and sex- and age-matched controls with other neurological diseases as well as healthy subjects. The demographic and clinical features at entry were collected. The serum levels of the SAA isoforms SAA1, SAA2, and SAA4 were determined in the patients with GBS and the controls using the enzyme-linked immunosorbent assay and analyzed for the associations between levels of different SAA isoforms and the clinical features of the patients.
Results:
The levels of SAA2 and SAA4 were significantly higher in patients with GBS than in both the other neurological disease controls and the healthy subjects (p<0.05 for all). The level of SAA1 did not differ between patients with GBS and the controls. The level of SAA2 was considerably higher in GBS patients with antecedent infection than in those without infection (p=0.020). The levels of different SAA isoforms were not associated with the disease severity or other clinical features of patients with GBS (p>0.05 for all).
Conclusions
Increased levels of SAA2 and SAA4 may only represent the acute inflammatory status and so cannot be utilized as biomarkers of the disease severity or demyelinating injury in patients with GBS.


Result Analysis
Print
Save
E-mail