1.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
2.Screening of initial processing methods for Ligusticum sinense slice based on differential metabolites
Yu HE ; Yanjing DONG ; Qian QIN ; Danyang WU ; Conglong XU ; Shouwen ZHANG
China Pharmacy 2025;36(11):1317-1322
OBJECTIVE To screen the primary processing methods of Ligusticum sinense slice based on differential metabolites, and provide theoretical basis for the scientific processing of L. sinense. METHODS Using 13 groups of L. sinense slice processed by fresh-cutting or traditional methods as samples, UHPLC-QE-MS was employed for metabolite identification. Multivariate statistical analysis was applied to screen differential metabolites among the 13 sample groups, analyzing the effects of washing, soaking, drying methods, and drying cycles on both the relative expressions of differential metabolites and the contents of carboxylic acids and their derivatives in the samples (to reflect the total amino acid content). RESULTS Principal component analysis and partial least squares-discriminant analysis both showed significant intergroup differences among the 13 sample groups. A total of 688 differential metabolites were screened from the 13 sample groups, with carboxylic acids and their derivatives showing the highest proportion. The relative expression levels of phosphatidylcholine significantly increased after washing treatment, while tryptophan expression significantly decreased after soaking treatment. Samples dried at 50-60 ℃ showed significantly increased expression of psoralen, whereas those dried at 40 ℃ showed significantly decreased expression of methyl -p- methoxycinnamate. Both washing and soaking treatments significantly reduced the total amino acid content in samples, while secondary drying significantly increased it. The three controlled-temperature drying methods maintained relatively stable total content of amino acids in samples. CONCLUSIONS The optimal processing protocol for L. sinense slice is as follows: fresh L. sinense slice should be freshly cut at the production site, undergo quick washing after soil removal, and be dried twice at 40 ℃ (before and after slicing).
3.Association between different regional fat distribution and total body bone mineral density in children and adolescents
CHEN Jingran, CHEN Manman, HE Huiming, LI Menglong, SUN Mengyang, HU Yifei
Chinese Journal of School Health 2025;46(7):1005-1008
Objective:
To analyze the association between each regional fat mass and total body bone mineral density (BMD) in children and adolescents aged 7-17 years in Beijing, so as to provide theoretical basis and practical guidance for implementing interventions.
Methods:
From September to December 2020, a stratified cluster random sampling method was used to select 1 423 children and adolescents aged 7-17 years in Tongzhou District, Beijing. Dual energy X-ray absorptiometry (DXA) was employed to measure regional body composition and total body BMD. Multiple linear regression was used to analyze the association between regional fat mass and total body BMD.
Results:
The median (interquartile range) fat mass values for total body, upper limbs, abdomen, hips, and thighs were 13.51(8.84, 19.21), 1.59(1.08, 2.23), 0.73(0.39, 1.29), 2.32(1.46, 3.26), 5.29(3.59, 7.21)kg, respectively. After adjusting for covariates, the results of multiple linear regression analysis showed that total body fat mass (β=0.010), abdominal fat mass (β=-0.100), and hip fat mass (β=0.104) were significant associations with total body BMD (all P<0.01). Sexstratified analysis revealed that in boys, total body fat mass (β=0.008) and hip fat mass (β=0.058) were positively associated with BMD, while thigh fat mass (β=-0.038) showed a negative association with total body BMD (all P<0.05). In girls, total body fat mass (β=0.013), hip fat mass (β=0.163), and thigh fat mass (β=0.023) were positively associated with total body BMD, whereas abdominal fat mass (β=-0.196) showed a negative association with total body BMD (all P<0.05). Among children and adolescents with body fat percentage below the standard range, within the standard range and above the standard range, total body fat masses were positively associated with total body BMD (β=0.021, 0.016, 0.015); among children and adolescents with body fat percentage within the standard range while upper limb (β=-0.042), abdominal (β=-0.067), and thigh fat mass (β=-0.018) showed negative associations with total body BMD, and hip fat mass demonstrated a positive association with total body BMD (β=0.082) (all P<0.05).
Conclusion
Regional fat distribution is associated with total body BMD in children and adolescents, with the nature of these associations varying by sex and body fat percentage.
4.Establishment of a closed-loop management system for the whole-process traceability of outpatient drugs based on internet of things and blockchain technology
Yanjing MA ; Jun HANG ; Yanan WANG ; Wenting JIANG ; Aiming SHI ; Jie PAN ; Peng QIAO
China Pharmacy 2025;36(20):2502-2506
OBJECTIVE To establish a closed-loop management system for the whole-process traceability of outpatient drugs based on internet of things (IoT) and blockchain technology, and evaluate its implementation effects. METHODS A closed-loop management system for the whole-process traceability of outpatient drugs covering the entire drug lifecycle was designed using drug traceability codes integrated with IoT and blockchain technology. System effectiveness was evaluated from three dimensions: work efficiency, medication management quality and data safety by comparing indicators such as the acceptance time of incoming drugs and the number of collected drug traceability codes before the system implementation (October to December 2024) and after the system implementation (January to March 2025). RESULTS A closed-loop management system for the whole-process traceability of outpatient drugs, centered around the drug traceability code management system, was successfully established. The acceptance time for incoming drugs was shortened from (4.65±0.26) h before implementation to (0.34±0.08) h after implementation (P< 0.05). The number of collected drug traceability codes increased from 419 018 to 1 236 522, and the coverage rate of traceability codes rose from 28.36% to 89.88% (P<0.05). The time pharmacists spent on drug expiry management per week decreased from (128.40±19.20) min to (0.56±0.13) min (P<0.05), and the dispensing time for a single prescription (excluding a part of injections and repackaged drugs) was reduced from (143.25±17.67) s to (15.24±10.08) s (P<0.05). The time for drug return was reduced from 129.90 (122.32, 137.00) s to 104.36 (89.91, 117.33) s(P<0.05); the number of drug dispensing errors decreased from 2 cases to 0 cases. After the system was launched, there were no data security incidents in our outpatient pharmacy. CONCLUSIONS The constructed closed-loop management system for the whole-process traceability of outpatient drugs can significantly enhance drug traceability accuracy and drug management quality, improve pharmacist work efficiency, and reduce drug management risks, thus providing a feasible solution for the digital transformation of hospital pharmaceutical services.
5.Improvement of quality standards for Zhuang medicine Yingbupu (Aralia armata)
Xiangpei ZHAO ; Jieying SU ; Tao XU ; Jing LIANG ; Yanjing LI ; Mei YANG
China Pharmacy 2025;36(21):2645-2650
OBJECTIVE To improve the quality standard of Zhuang medicine Yingbupu (Aralia armata). METHODS A total of 23 batches of Yingbupu (A. armata) were studied. Their macroscopic characteristics and powder microscopic features were observed. TLC was employed for the qualitative identification of oleanolic acid and araloside A. Items such as water content, total ash, acid-insoluble ash, and ethanol-soluble extract were determined according to the methods specified in the 2020 edition of the Chinese Pharmacopoeia (part Ⅳ). UPLC fingerprint was established for 23 batches of samples by using Similarity Evaluation System for Chromatographic Fingerprints of Traditional Chinese Medicine (2012 edition), and the contents of oleanolic acid and araloside A were determined. RESULTS The powder microscopic characteristics of the medicinal material were distinctive. Oleanolic acid and araloside A were detected by TLC in all 23 batches. Among the 23 batches of samples, the content ranges of moisture, total ash, acid-insoluble ash, and ethanol-soluble extract were 6.9% to 10.4%, 1.8% to 6.8%, 0.1% to 1.9%, and 2.8% to 8.4%, respectively. Based on the UPLC fingerprint, a total of 15 common peaks were obtained, and 9 of these common peaks were identified. The content ranges of oleanolic acid and araloside A in the 23 batches of samples were 0.86% to 2.69% and 0.16% to 1.10%, respectively. CONCLUSIONS This study has added items such as moisture and total ash content fingerprint, TLC identification. A preliminary quality standard has been established for the medicinal material of Yingbupu (A. armata), stipulating that the moisture content should not exceed 11.0%, the total ash content should not exceed 5.0%, the acid-insoluble ash content should not exceed 2.5%, the ethanol-soluble extract(No. content should not be less than 4.0%, and the contents of zyyzdxk-2023165) oleanolic acid and araloside A should not be less than 1.00% and 0.45%( calculated by a dried basis), respectively.
7.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
8.A high clinically translatable strategy to anti-aging using hyaluronic acid and silk fibroin co-crosslinked hydrogels as dermal regenerative fillers.
Jialing CHENG ; Zhiyang CHEN ; Demin LIN ; Yanfang YANG ; Yanjing BAI ; Lingshuang WANG ; Jie LI ; Yuchen WANG ; Hongliang WANG ; Youbai CHEN ; Jun YE ; Yuling LIU
Acta Pharmaceutica Sinica B 2025;15(7):3767-3787
An ideal dermal filler should integrate filling, repair, and anti-aging effects, with immediate tissue augmentation, slow degradation, and progressive stimulation of collagen regeneration. However, commonly used hyaluronic acid (HA) hydrogels, while effective for rapid filling, suffer from limited duration of support, weak cell adhesion, and an inability to promote collagen regeneration. Silk fibroin (SF), a natural protein from silkworm cocoons, is known for its excellent cell adhesion and collagen-stimulating abilities. However, its limited gelation capability restricts its potential application as a standalone injectable hydrogel. Based on a complementary strategy, this study combines the rapid gelling properties of HA with the collagen regenerative properties of SF to create a co-crosslinked HA-SF hydrogel. The composite hydrogel merges HA's rapid filling effect with SF's strong tissue adhesion and collagen-stimulating abilities. The formulation, physicochemical properties, degradation, biocompatibility, and filling effects of the HA-SF hydrogel were systematically investigated. HA-SF hydrogel exhibits excellent mechanical properties and ensures long-term support while maintaining injectability. Interestingly, after intradermal injection in the UVB-induced photoaging model, HA-SF hydrogel not only enhances hydrogel-cell interaction but also continues to stimulate collagen regeneration, especially type III collagen. This dual action achieves the biological effects of repair and anti-aging while maintaining the filling effect. Proteomic analysis confirms that repair and anti-aging effects are enhanced by the regulation of skin fibroblasts and modulation of amino acid and lipid metabolism. This composite hydrogel holds strong promise for clinical applications, offering a safer, long-lasting, and more natural injectable filler that combines filling, repair, and anti-aging into one system.
9.Scaffold and SAR studies on c-MET inhibitors using machine learning approaches.
Jing ZHANG ; Mingming ZHANG ; Weiran HUANG ; Changjie LIANG ; Wei XU ; Jinghua ZHANG ; Jun TU ; Innocent Okohi AGIDA ; Jinke CHENG ; Dong-Qing WEI ; Buyong MA ; Yanjing WANG ; Hongsheng TAN
Journal of Pharmaceutical Analysis 2025;15(6):101303-101303
Numerous c-mesenchymal-epithelial transition (c-MET) inhibitors have been reported as potential anticancer agents. However, most fail to enter clinical trials owing to poor efficacy or drug resistance. To date, the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed. In this study, we constructed the largest c-MET dataset, which included 2,278 molecules with different structures, by inhibiting the half maximal inhibitory concentration (IC50) of kinase activity. No significant differences in drug-like properties were observed between active molecules (1,228) and inactive molecules (1,050), including chemical space coverage, physicochemical properties, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding (t-SNE) high-dimensional data. Further clustering and chemical space networks (CSNs) analyses revealed commonly used scaffolds for c-MET inhibitors, such as M5, M7, and M8. Activity cliffs and structural alerts were used to reveal "dead ends" and "safe bets" for c-MET, as well as dominant structural fragments consisting of pyridazinones, triazoles, and pyrazines. Finally, the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules, including at least three aromatic heterocycles, five aromatic nitrogen atoms, and eight nitrogen-oxygen atoms. Overall, our analyses revealed potential structure-activity relationship (SAR) patterns for c-MET inhibitors, which can inform the screening of new compounds and guide future optimization efforts.
10.Analysis of influencing factors of suicidal ideation among children and adolescents with severe autism spectrum disorder
HU Zhiming, SUN Jingyan, ZHAO Guoyong, LIU Hong, BAN Yanjing, ZHANG Rui, TIAN Li, GAO Lei
Chinese Journal of School Health 2025;46(12):1741-1745
Objective:
To explore the influencing factors and pathways of suicidal ideation among children and adolescents with severe autism spectrum disorder (ASD), so as to provide references for clarifying the impact intensity and pathways of various factors on suicidal ideation in the population.
Methods:
A cross sectional study was conducted from June 17, 2024, to January 12, 2025, involving 96 severely affected ASD children and adolescents aged 8-18 years from Tianjin. Participants were assessed using the Puberty Development Scale (PDS), Children s Alexithymia Measure (CAM), Strengths and Difficulties Questionnaire (SDQ), and Positive and Negative Suicide Ideation (PANSI). The random forest Boruta algorithm was employed to screen core variables, and a Bayesian network model was constructed to analyze the influencing factors of suicidal ideation in children and adolescents with severe ASD.
Results:
Through the screening using the Boruta algorithm, the SDQ scale score, conduct problems, hyperactivity, peer relationship problems and prosocial behavior were identified as the key predictors of suicidal ideation. A Bayesian network model was established with hyperactivity as the central mediating node. The impact of hyperactivity on suicidal ideation exhibited a non linear relationship: compared to the normal state (31.6%, 68.4%), the borderline state of hyperactivity was associated with a higher probability of low risk suicidal ideation (47.1%) and a lower probability of high risk suicidal ideation (52.9%). Suicidal ideation among children and adolescents with severe ASD was closely related to hyperactivity. In the state of hyperactivity, the abnormal peer relationship (95.2%) and the abnormal prosocial behavior (77.0%) were aggravated.
Conclusions
Suicide ideation among children and adolescents with severe ASD is strongly associated with hyperactivity traits. It is necessary to establish a prevention and control system centered on hyperactivity intervention to reduce this risk.


Result Analysis
Print
Save
E-mail