1.Integration of nuclear and radiation emergency medical treatment in the national emergency medical rescue team
Qiang ZHANG ; Yang LI ; Yan XIA ; Yuwei QI
Chinese Journal of Radiological Health 2025;34(3):433-436
This study aims to address the specificity of nuclear and radiation medical treatment and explore the way to integrate such emergency medical treatment in national emergency medical rescue teams. By analyzing the characteristics of nuclear and radiation medical treatment, as well as the foundation, roles, and development of national emergency medical rescue teams, the study proposes a series of practical and feasible strategies, including professional knowledge training, manpower and material resource assurance, emergency response coordination mechanisms, and psychological health support. These strategies help to compensate for the professional deficiencies of national emergency medical rescue teams in responding to nuclear incidents and enhance their overall comprehensive capabilities, enabling them to better fulfill their responsibilities in health emergency rescue.
2.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
3.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*
4.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
5.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
6.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
7.CFAP300 loss-of-function variant causes primary ciliary dyskinesia and male infertility via disrupting sperm flagellar assembly and acrosome formation.
Hua-Yan YIN ; Yu-Qi ZHOU ; Qun-Shan SHEN ; Zi-Wen CHEN ; Jie-Ru LI ; Huan WU ; Yun-Xia CAO ; Rui GUO ; Bing SONG
Asian Journal of Andrology 2025;27(6):743-750
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired motility of cilia and flagella. Mutations in cilia- and flagella-associated protein 300 ( CFAP300 ) are associated with human PCD and male infertility; however, the underlying pathogenic mechanisms remain poorly understood. In a consanguineous Chinese family, we identified a homozygous CFAP300 loss-of-function variant (c.304delC) in a proband presenting with classical PCD symptoms and severe sperm abnormalities, including dynein arm deficiency and acrosomal malformation, as confirmed by transmission electron microscopy (TEM). Histological analysis revealed multiple morphological abnormalities of the sperm flagella in CFAP300 -mutant individual, whereas immunofluorescence demonstrated markedly reduced CFAP300 expression in the spermatozoa of the proband. Furthermore, tandem mass tag (TMT)-based quantitative proteomics showed that the CFAP300 mutation reduced key spermatogenesis proteins (e.g., sperm flagellar 2 [SPEF2], solute carrier family 25 member 31 [SLC25A31], and A-kinase anchoring protein 3 [AKAP3]) and mitochondrial ATP synthesis factors (e.g., SLC25A31, cation channel sperm-associated 3 [CATSPER3]). It also triggered abnormal increases in autophagy-related proteins and signaling mediator phosphorylation. These molecular alterations are likely to contribute to progressive deterioration of sperm ultrastructure and function. Notably, successful pregnancy was achieved via intracytoplasmic sperm injection (ICSI) using the proband's sperm. Overall, this study expands the known CFAP300 mutational spectrum and offers novel mechanistic insights into its role in spermatogenesis.
Humans
;
Male
;
Infertility, Male/pathology*
;
Acrosome/pathology*
;
Sperm Tail/pathology*
;
Pedigree
;
Spermatozoa
;
Adult
;
Loss of Function Mutation
;
Ciliary Motility Disorders/genetics*
;
Spermatogenesis/genetics*
;
Female
9.Influence of Outdoor Light at Night on Early Reproductive Outcomes of In Vitro Fertilization and Its Threshold Effect: Evidence from a Couple-Based Preconception Cohort Study.
Wen Bin FANG ; Ying TANG ; Ya Ning SUN ; Yan Lan TANG ; Yin Yin CHEN ; Ya Wen CAO ; Ji Qi FANG ; Kun Jing HE ; Yu Shan LI ; Ya Ning DAI ; Shuang Shuang BAO ; Peng ZHU ; Shan Shan SHAO ; Fang Biao TAO ; Gui Xia PAN
Biomedical and Environmental Sciences 2025;38(8):1009-1015
10.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*

Result Analysis
Print
Save
E-mail