1.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
2.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
3.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
4.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
5.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
6.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
7.Impact of early detection and management of emotional distress on length of stay in non-psychiatric inpatients: A retrospective hospital-based cohort study.
Wanjun GUO ; Huiyao WANG ; Wei DENG ; Zaiquan DONG ; Yang LIU ; Shanxia LUO ; Jianying YU ; Xia HUANG ; Yuezhu CHEN ; Jialu YE ; Jinping SONG ; Yan JIANG ; Dajiang LI ; Wen WANG ; Xin SUN ; Weihong KUANG ; Changjian QIU ; Nansheng CHENG ; Weimin LI ; Wei ZHANG ; Yansong LIU ; Zhen TANG ; Xiangdong DU ; Andrew J GREENSHAW ; Lan ZHANG ; Tao LI
Chinese Medical Journal 2025;138(22):2974-2983
BACKGROUND:
While emotional distress, encompassing anxiety and depression, has been associated with negative clinical outcomes, its impact across various clinical departments and general hospitals has been less explored. Previous studies with limited sample sizes have examined the effectiveness of specific treatments (e.g., antidepressants) rather than a systemic management strategy for outcome improvement in non-psychiatric inpatients. To enhance the understanding of the importance of addressing mental health care needs among non-psychiatric patients in general hospitals, this study retrospectively investigated the impacts of emotional distress and the effects of early detection and management of depression and anxiety on hospital length of stay (LOS) and rate of long LOS (LLOS, i.e., LOS >30 days) in a large sample of non-psychiatric inpatients.
METHODS:
This retrospective cohort study included 487,871 inpatients from 20 non-psychiatric departments of a general hospital. They were divided, according to whether they underwent a novel strategy to manage emotional distress which deployed the Huaxi Emotional Distress Index (HEI) for brief screening with grading psychological services (BS-GPS), into BS-GPS ( n = 178,883) and non-BS-GPS ( n = 308,988) cohorts. The LOS and rate of LLOS between the BS-GPS and non-BS-GPS cohorts and between subcohorts with and without clinically significant anxiety and/or depression (CSAD, i.e., HEI score ≥11 on admission to the hospital) in the BS-GPS cohort were compared using univariable analyses, multilevel analyses, and/or propensity score-matched analyses, respectively.
RESULTS:
The detection rate of CSAD in the BS-GPS cohort varied from 2.64% (95% confidence interval [CI]: 2.49%-2.81%) to 20.50% (95% CI: 19.43%-21.62%) across the 20 departments, with a average rate of 5.36%. Significant differences were observed in both the LOS and LLOS rates between the subcohorts with CSAD (12.7 days, 535/9590) and without CSAD (9.5 days, 3800/169,293) and between the BS-GPS (9.6 days, 4335/178,883) and non-BS-GPS (10.8 days, 11,483/308,988) cohorts. These differences remained significant after controlling for confounders using propensity score-matched comparisons. A multilevel analysis indicated that BS-GPS was negatively associated with both LOS and LLOS after controlling for sociodemographics and the departments of patient discharge and remained negatively associated with LLOS after controlling additionally for the year of patient discharge.
CONCLUSION
Emotional distress significantly prolonged the LOS and increased the LLOS of non-psychiatric inpatients across most departments and general hospitals. These impacts were moderated by the implementation of BS-GPS. Thus, BS-GPS has the potential as an effective, resource-saving strategy for enhancing mental health care and optimizing medical resources in general hospitals.
Humans
;
Retrospective Studies
;
Male
;
Length of Stay/statistics & numerical data*
;
Female
;
Middle Aged
;
Adult
;
Psychological Distress
;
Inpatients/psychology*
;
Aged
;
Anxiety/diagnosis*
;
Depression/diagnosis*
8.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
9.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
10.Expression of CSF-1/CSF-1R in the Peripheral Blood of Children with Immune Thrombocytopenia and Its Clinical Significance.
Dan-Lu LI ; Hai-Chen SONG ; Yong-Feng CHENG ; Mei YAN
Journal of Experimental Hematology 2025;33(4):1131-1137
OBJECTIVE:
To investigate the expression of CSF-1 and CSF-1R in the peripheral blood of children with immune thrombocytopenia (ITP) and its clinical significance.
METHODS:
Forty-four children with ITP treated in our hospital from February 2023 to January 2024 were selected as the observation group, and 40 healthy children were selected as the control group during the same period, and relevant clinical data were collected. Peripheral blood mononuclear cells (PBMC) of children with ITP and healthy children were separated, and the plasma levels of M1 macrophage-associated cytokines (TNF-α, IL-6), M2 macrophage-associated cytokines (IL-10, TGF-β), and CSF-1 were detected by ELISA in the children of both groups. The mRNA levels of M1 macrophage surface markers (CD86, iNOS), M2 macrophage surface markers (CD206, Arg-1) and CSF-1R were detected by RT-PCR in PBMC of children in both groups. Western blot was used to detect the expression of CSF-1R protein in PBMC of the two groups of children. The correlation between platelet count and CSF-1R mRNA expression in PBMC, TNF-α, IL-6, IL-10, TGF-β and CSF-1 in plasma was analyzed.
RESULTS:
Compared with the control group, the levels of IL-10, TGF-β, CSF-1 and platelet count in plasma of children with ITP were significantly decreased (P < 0.01), and the levels of TNF-α and IL-6 were significantly increased (P < 0.01); the mRNA levels of the M1 macrophage surface markers (CD86, iNOS) in PBMC of children with ITP were significantly increased (P < 0.05), mRNA levels of M2 macrophage surface marker CD206 in PBMC of children with ITP were decreased compared with controls but the difference was not statistically significant ( P >0.05), mRNA levels of Arg-1 were decreased, the difference was statistically significant (P < 0.05). The mRNA and protein levels of CSF-1R in PBMC of ITP children were higher than that in controls. CSF-1R expression in PBMC of ITP was positively correlated with platelet count, IL-10, CSF-1 were positively correlated (r =0.822,0.481,0.405).
CONCLUSION
CSF-1 is significantly reduced in the plasma of ITP, and CSF-1R mRNA and protein expression is significantly elevated in PBMC of ITP, which are involved in the regulation of macrophage M1/M2 imbalance, and could serve as a potential therapeutic target for ITP.
Humans
;
Purpura, Thrombocytopenic, Idiopathic/blood*
;
Macrophage Colony-Stimulating Factor/metabolism*
;
Leukocytes, Mononuclear/metabolism*
;
Child
;
Interleukin-10/blood*
;
Macrophages/metabolism*
;
Tumor Necrosis Factor-alpha/blood*
;
Interleukin-6/blood*
;
Male
;
Female
;
Transforming Growth Factor beta/blood*
;
Receptor, Macrophage Colony-Stimulating Factor/metabolism*
;
Clinical Relevance

Result Analysis
Print
Save
E-mail