1.Effects of Grifola frondosa extracts on mouse immunity
Bin WEN ; Changlong L■ ; Yaming CAO
Chinese Journal of Immunology 2000;0(08):-
Objective :To investigate the effects of ethanol precipitate(ET-Pre) and RNA of Grifola frondosa on non-specific immunity in mouse.Methods:The common biological methods were used to examine the levels of cytokines and immunocyte activity. Results: The killing activity of the NK cells, the phagocytosis function of macrophages and the levels of TNF?/IL-1 in the animals treated with ET-Pre and RNA respectively were significantly higher than those in the control.The RNA was stronger than ET-Pre in increasing killing activity of NK cells and phagocytosis function of macrophages. Conclusion:Both ET-Pre and RNA extracts of Grifola frondosa may promote immunoactivity nonspecifi-cally and inhibit tumor cells indirectly.
2.The comparison of methodologies ot assessing myocardial reperfusion in patients with acute myocardial infarction after primary angioplasty
Shijie ZHAO ; Wen TIAN ; Guoxian QI ; Yaming LI ; Xuena LI
Chinese Journal of Postgraduates of Medicine 2008;31(28):19-21
Objective To assess the predictive value of coronary angiography TIMI myocardial perfusion grade (TMPG), electrocardiogram (ECG) single-lend ST segment resolution (STR), ECG Max-ST-segment deviation (MaxSTE) on judging myocardial reperfusion after primary angioplasty in the patients with acute myocardial infarction (AMI). Methods Primary percutaneous coronary intervention(PCI) was performed in 42 patients within 12 hours after AMI onset. Coronary angiography and ECG was done before and after angioplasty. TMPG, ECG single-leed STR and MaxSTE were used to assess myocardial reperfusion immediately after PCI. Myocardial perfusion scan was examined in all the patients using99mTc-MIBI SPECT on day 7±2. Results Compared with the level of myocardial perfusion demonstrated in myocardial scan of 99mTc-MIBI SPECT, the sensitivity, specificity and accuracy of TMPG, single-lead STR and MaxSTE was calculated. The sensitivity of TMPG, single-lead STR and MaxSTE was 93.75%, 87.50% and 81.25%, respectively, the specificity of them was 20.00%, 80.00% and 80.00%, respectively, and the accuracy was 76.19%, 85.71% and 80.95%, respectively. The findings in single-lead STR and MaxSTE matched well with the results of myocardial scan of 99mTc-MIBI SPECT. Conclusion In the patients suffering from AMI treated with PCI, ECG is an effective method to assess myocardial tissue reperfusion.
3.The comparative study of the anterior cruciate ligament in oblique coronal thin anatomical section and MRI
Wei CHEN ; Ming LU ; Jian WANG ; Shiyi DING ; Liu YANG ; Xiaoyu WANG ; Yaming WEN ; Mingguo QIU
Chinese Journal of Radiology 2008;42(1):80-83
Objective To compare the normal anatomy of the anterior cruciate ligament (ACL) of fresh frozen cadaveric knee specimen in oblique coronal thin-slice section with oblique coronal magnetic resonance imaging. Methods One fresh cadaveric knee specimen was scanned with MR T1-weighted spinecho sequence.then the specimen was frozen and sliced with a band saw along the oblique coronal plane into 1.0-mm-thick sections that corresponded to the MR images,MR images including oblique coronal T1-weighted and T2-weighted images of 50 normal the knee joints were retrospectively reviewed to observe the MR imaging features of the cruciate ligament. Results Anteromedial and posterolateral bundles of ACL were clearly depicted on both anatomic slices and MR images.The anteromedial bundles originated from the posteromedial aspect of the lateral femoral condyle,coursing through the lateral intercondylar notch in an anterior,inferior,and medial direction,and inserted on the anteromedial aspect of the intercondylar eminence. The posterolateral bundles originated from the anteromedial aspect of the lateral femoral condyle,passing laterally and inferiorly through the lateral intercondylar notch,and inserted on the posterolateral side of the intercondylar eminence.The full length of ACL of all 50 individuals was showed on MR images.MRI clearly differenitated the anteromedial and posterolateral bundles of ACL and depicted the full length of the bundles.similar to the findings on sectional anatomy.Conclusion Oblique coronal MR imaging is the best way to demonstrate ACL and should be used for clinically suspected injury of ACL.
4.HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus.
Lifen WANG ; Yi ZHAN ; Eli SONG ; Yong YU ; Yaming JIU ; Wen DU ; Jingze LU ; Pingsheng LIU ; Pingyong XU ; Tao XU
Protein & Cell 2011;2(1):74-85
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans- Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.
Animals
;
Brefeldin A
;
pharmacology
;
Cell Line, Tumor
;
Cytosol
;
drug effects
;
metabolism
;
Humans
;
Intracellular Space
;
drug effects
;
metabolism
;
Membrane Proteins
;
metabolism
;
Protein Transport
;
drug effects
;
Rats
;
Vesicular Transport Proteins
;
metabolism
;
trans-Golgi Network
;
drug effects
;
metabolism
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope.
Zezhong LIU ; Wei XU ; Zhenguo CHEN ; Wangjun FU ; Wuqiang ZHAN ; Yidan GAO ; Jie ZHOU ; Yunjiao ZHOU ; Jianbo WU ; Qian WANG ; Xiang ZHANG ; Aihua HAO ; Wei WU ; Qianqian ZHANG ; Yaming LI ; Kaiyue FAN ; Ruihong CHEN ; Qiaochu JIANG ; Christian T MAYER ; Till SCHOOFS ; Youhua XIE ; Shibo JIANG ; Yumei WEN ; Zhenghong YUAN ; Kang WANG ; Lu LU ; Lei SUN ; Qiao WANG
Protein & Cell 2022;13(9):655-675
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
Angiotensin-Converting Enzyme 2
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Epitopes
;
Humans
;
SARS-CoV-2/genetics*
;
Spike Glycoprotein, Coronavirus/genetics*