1.Analysis of the evaluation mechanism and methodology of clinical comprehensive evaluation cases of drugs in China
Yuan QIAO ; Fangyi MA ; Yubei HAN ; Mingyue ZHAO ; Minghuan JIANG ; Yu FANG
China Pharmacy 2025;36(2):146-153
OBJECTIVE To sort out the evaluation mechanism and methodology of published cases of comprehensive clinical evaluation of drugs in China, and provide a reference for promoting standardized comprehensive clinical evaluation of drugs and strengthening policy transformation in China. METHODS Clinical comprehensive evaluation cases of drugs published in China from CNKI, Wanfang Data, PubMed and Web of Science were systematically searched, and the retrieval time was from the inception to December 31st, 2023. The summary and analysis were performed from the aspects of theme selection, indicator system construction, evaluation methods, comprehensive decision-making, quality control, etc. RESULTS A total of 143 pieces of literature were ultimately included from 2014 to 2023. The number of publications has shown a rapid upward trend since 2019. The subjects of the evaluation cases were mainly pediatric drugs, Chinese patent medicines, cardiovascular drugs and anti-tumor drugs. The evaluation dimensions were between 3-8, all involving safety and effectiveness dimensions. Most cases adopted rapid evaluation methods based on literature review and expert interviews/questionnaire surveys with less emphasis on real-world research. Most cases did not involve comprehensive decision-making, quality control, or policy transformation. CONCLUSIONS The clinical comprehensive evaluation of drugs in China has made rapid progress under the guidance of national policies. However, there are still issues and challenges such as incomplete evaluation methods and standards, few cases of evaluation results being converted into decision-making, and a lack of quality control mechanisms. It is suggested that standardized evaluation paths and quality control mechanisms should be explored; when the evidence-based basis is insufficient, real-world research should be conducted as much as possible, so as to accelerate the policy transformation of evaluation results.
2.Effects of Modified shaoyao gancao decoction on intestinal transit function,intestinal flora and metabolite content in slow transit constipation rat
Ziqi ZHANG ; Hongyun ZHOU ; Qiong ZHAO ; Yuan DENG ; Yu ZHAN
China Pharmacy 2025;36(2):154-159
OBJECTIVE To observe the effects of Modified shaoyao gancao decoction on intestinal transit function, intestinal flora and the contents of metabolites [γ aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)] in slow transit constipation (STC) rats. METHODS SD rats were randomly divided into blank group (10 rats) and modeling group (30 rats), with half male and half female. The STC model was established by intragastric administration of Compound diphenoxylate tablets in the modeling group. The successfully modeled rats were randomly divided into model group, Modified shaoyao gancao decoction group [56 g/(kg·d), calculated by crude drug] and positive control group [lactulose 2.09 g/(kg·d)], with 10 rats in each group. Each administration group was given relevant medicine intragastrically, the blank group and model group received an equivalent volume of normal saline, once a day, for 14 consecutive days. During the experiment, the general situation of rats was observed in each group. After the last medication, the body weight was measured, and the Bristol score was used to evaluate the fecal characteristics. The fecal moisture content, intestinal propulsion rate, and the contents of GABA and 5-HT in intestinal content were detected; the diversity of intestinal flora in intestinal contents was investigated, and the correlation between the contents of GABA, 5-HT and relative abundance of microbiota was analyzed. RESULTS Compared with the model group, general conditions such as small body shape, sparse and rough fur, and slow movement were all improved in Modified shaoyao gancao decoction body weight, Bristol score, fecal moisture content,intestinal propulsion rate, 5-HT content, Chao1 index and Shannon index were increased significantly, while GABA content and Simpson index were decreased significantly (P<0.05). The intestinal flora of rats in the Modified shaoyao gancao decoction group could be classified as the same as the blank group, but was far from the model group; the relative abundances of Desulfobacterota, Firmicutes and Bacteroidota in this group showed a tendency of pull back, but the differences were not statistically significant compared to model group (P>0.05). Desulfobacterota was an intergroup differential factor (P<0.05). The content of GABA was negatively correlated with the relative abundance of Bacteroidota, Cyanobacteria, Patescibacteria and Actinobacteriota (P<0.05). The content of 5-HT was positively correlated with the relative abundance of Campilobacterota (P<0.05). CONCLUSIONS Modified shaoyao gancao decoction can improve the fecal properties and intestinal motility of STC rats. Its mechanism may be related to improving intestinal flora and then affecting the contents of GABA and 5-HT in intestinal contents. In addition, the contents of GABA and 5-HT may be significantly correlated with the relative abundance of specific bacterial phyla such as Bacteroidota and Campilobacterota.
3.The management of vascular access in therapeutic apheresis
Ying JIANG ; Yuan ZHUANG ; Yang YU
Chinese Journal of Blood Transfusion 2025;38(1):43-47
Therapeutic apheresis (TA) is currently used for both hematological and non-hematological diseases. Due to its reliable efficacy, good safety, and simple operation, TA has been widely used in the clinical diagnosis and treatment of patients with refractory and severe diseases. From the operator's perspective, the successful completion of treatment largely depends on the appropriate vascular access. This review summarizes the background, development trends, types, advantages and disadvantages of vascular access during the TA process to guide clinical operation practice.
4.Analysis of the evaluation mechanism and methodology of clinical comprehensive evaluation cases of drugs in China
Yuan QIAO ; Fangyi MA ; Yubei HAN ; Mingyue ZHAO ; Minghuan JIANG ; Yu FANG
China Pharmacy 2025;36(2):146-153
OBJECTIVE To sort out the evaluation mechanism and methodology of published cases of comprehensive clinical evaluation of drugs in China, and provide a reference for promoting standardized comprehensive clinical evaluation of drugs and strengthening policy transformation in China. METHODS Clinical comprehensive evaluation cases of drugs published in China from CNKI, Wanfang Data, PubMed and Web of Science were systematically searched, and the retrieval time was from the inception to December 31st, 2023. The summary and analysis were performed from the aspects of theme selection, indicator system construction, evaluation methods, comprehensive decision-making, quality control, etc. RESULTS A total of 143 pieces of literature were ultimately included from 2014 to 2023. The number of publications has shown a rapid upward trend since 2019. The subjects of the evaluation cases were mainly pediatric drugs, Chinese patent medicines, cardiovascular drugs and anti-tumor drugs. The evaluation dimensions were between 3-8, all involving safety and effectiveness dimensions. Most cases adopted rapid evaluation methods based on literature review and expert interviews/questionnaire surveys with less emphasis on real-world research. Most cases did not involve comprehensive decision-making, quality control, or policy transformation. CONCLUSIONS The clinical comprehensive evaluation of drugs in China has made rapid progress under the guidance of national policies. However, there are still issues and challenges such as incomplete evaluation methods and standards, few cases of evaluation results being converted into decision-making, and a lack of quality control mechanisms. It is suggested that standardized evaluation paths and quality control mechanisms should be explored; when the evidence-based basis is insufficient, real-world research should be conducted as much as possible, so as to accelerate the policy transformation of evaluation results.
5.Effects of Modified shaoyao gancao decoction on intestinal transit function,intestinal flora and metabolite content in slow transit constipation rat
Ziqi ZHANG ; Hongyun ZHOU ; Qiong ZHAO ; Yuan DENG ; Yu ZHAN
China Pharmacy 2025;36(2):154-159
OBJECTIVE To observe the effects of Modified shaoyao gancao decoction on intestinal transit function, intestinal flora and the contents of metabolites [γ aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)] in slow transit constipation (STC) rats. METHODS SD rats were randomly divided into blank group (10 rats) and modeling group (30 rats), with half male and half female. The STC model was established by intragastric administration of Compound diphenoxylate tablets in the modeling group. The successfully modeled rats were randomly divided into model group, Modified shaoyao gancao decoction group [56 g/(kg·d), calculated by crude drug] and positive control group [lactulose 2.09 g/(kg·d)], with 10 rats in each group. Each administration group was given relevant medicine intragastrically, the blank group and model group received an equivalent volume of normal saline, once a day, for 14 consecutive days. During the experiment, the general situation of rats was observed in each group. After the last medication, the body weight was measured, and the Bristol score was used to evaluate the fecal characteristics. The fecal moisture content, intestinal propulsion rate, and the contents of GABA and 5-HT in intestinal content were detected; the diversity of intestinal flora in intestinal contents was investigated, and the correlation between the contents of GABA, 5-HT and relative abundance of microbiota was analyzed. RESULTS Compared with the model group, general conditions such as small body shape, sparse and rough fur, and slow movement were all improved in Modified shaoyao gancao decoction body weight, Bristol score, fecal moisture content,intestinal propulsion rate, 5-HT content, Chao1 index and Shannon index were increased significantly, while GABA content and Simpson index were decreased significantly (P<0.05). The intestinal flora of rats in the Modified shaoyao gancao decoction group could be classified as the same as the blank group, but was far from the model group; the relative abundances of Desulfobacterota, Firmicutes and Bacteroidota in this group showed a tendency of pull back, but the differences were not statistically significant compared to model group (P>0.05). Desulfobacterota was an intergroup differential factor (P<0.05). The content of GABA was negatively correlated with the relative abundance of Bacteroidota, Cyanobacteria, Patescibacteria and Actinobacteriota (P<0.05). The content of 5-HT was positively correlated with the relative abundance of Campilobacterota (P<0.05). CONCLUSIONS Modified shaoyao gancao decoction can improve the fecal properties and intestinal motility of STC rats. Its mechanism may be related to improving intestinal flora and then affecting the contents of GABA and 5-HT in intestinal contents. In addition, the contents of GABA and 5-HT may be significantly correlated with the relative abundance of specific bacterial phyla such as Bacteroidota and Campilobacterota.
6.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
7.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
8.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
9.Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells/resveratrol liposomes for traumatic brain injury treatment
Wenya CHI ; Yan YUAN ; Weilin LI ; Tongyu WU ; Yuan YU
Journal of Pharmaceutical Practice and Service 2025;43(2):67-74
Objective To prepare a thermosensitive hydrogel scaffold loaded with bone marrow mesenchymal stem cells(BMSCs) and resveratrol liposomes (RSV-LIP) to form a therapeutic unit and evaluate its treatment efficacy for traumatic brain injury (TBI). Methods BMSCs were extracted from rats, and RSV-LIP was prepared and characterized. Cell models were constructed to investigate the pharmacological effects of BMSCs combined with RSV-LIP. BMSCs and RSV-LIP were then loaded into the hydrogel, and a TBI mouse model was established to evaluate the therapeutic effects of the hydrogel. Results The RSV-LIP had a particle size of 127.8 nm, a Zeta potential of −4.9 mV, an encapsulation efficiency of 78.50%, and a drug loading content of 2.37%. Live-dead staining indicated good biocompatibility of the hydrogel. The combination of BMSCs and RSV-LIP significantly inhibited TNF-α and reduced ROS levels, promoting cell migration in scratch assays. Compared to the control group, the hydrogel group showed significantly lower mNSS scores (P<0.01), higher hanging scores (P<0.001), and reduced stepping errors (P<0.001). Conclusion The combination of BMSCs and RSV-LIP exhibited antioxidative stress, anti-inflammatory, and neurogenic cell migration-promoting effects. When loaded into a hydrogel scaffold and locally implanted, it could improve the motor and sensory functions in TBI mice.
10.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.

Result Analysis
Print
Save
E-mail