1.Synthesis and investigation on antidiabetic activity of 4-(1-aryl-3-oxo-5-phenylpentylamino) benzenesulfonamide.
Dacheng YANG ; Jufang YAN ; Jin XU ; Fei YE ; Zuwen ZHOU ; Weiyu ZHANG ; Li FAN ; Xin CHEN
Acta Pharmaceutica Sinica 2010;45(1):66-71
Searching for new antidiabetic lead compound, 4-(1-aryl-3-oxo-5-phenylpentylamino) benzenesulfonamides were designed and synthesized directly by three component one-pot condensation of 4-phenyl-2-butanone and sulfanilamide with some aromatic aldehydes at an yield of 23%-97%. The chemical structures of the twelve new Mannich bases were confirmed by 1H NMR, 13C NMR, FTIR, ESI-MS and HR-MS. The screening results of antidiabetic activity indicated that most of these title compounds possess alpha-glucosidase inhibitory activity, among which compound le is the strongest one. And compound 11 possesses good peroxisome proliferator-activated receptor response element (PPRE) agonist activity. The structure-activity relationship of these new beta-amino ketones containing benzenesulfonamide unit was also discussed preliminarily.
2.Molecular Mechanism of Essential Oil from Chimonanthus nitens Leaves Against Acute Lung Injury
Jie XU ; Xiaofei ZHANG ; Fengqin LI ; Qiaohong LIN ; Zuwen YE ; Qingyao CHEN ; Jiale LI ; Fang WANG ; Ming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(1):123-132
ObjectiveBased on network pharmacology and molecular docking techniques, the mechanism of essential oil from Chimonanthus nitens leaves (CLO) in the treatment of acute lung injury (ALI) was predicted, and a rat model of ALI was established to verify the mechanism of CLO. MethodThe composition of CLO was determined by gas chromatography-mass spectrometry (GC-MS). The component targets were obtained from PharmMapper and SwissTargetPrediction databases, ALI-related targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM) and DisGeNET, cross-over analysis with differential expressed genes (DEGs) of ALI obtained from Gene Expression Omnibus (GEO) on the Venny 2.1.0 platform yielded potential anti-ALI targets of CLO. Protein-protein interaction (PPI) analysis of potential targets was carried out by STRING 11.5. The tissue expression profiles of potential targets were obtained from the National Center for Biotechnology Information (NCBI) and the target tissue distribution maps were constructed. Potential targets were analyzed for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment by RStudio 4.0.0 software. Composition-target-pathway network was constructed by Cytoscape 3.9.1 software, and key components and pathways were screened out and verified by molecular docking. ALI model was established by lipopolysaccharide (LPS) induction, levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in serum of rats were measured, the expression levels of IL-17 protein in the lung tissue of ALI rats were analyzed by immunohistochemistry. ResultA total of 19 components of CLO were identified by GC-MS, and 18 potential targets were obtained by target screening. After PPI analysis, 15 target proteins with interaction relationship were obtained, further analysis showed that they were highly expressed in lung and thymus. The network diagram of component-target-pathway was analyzed to obtain the key components, including bornyl acetate, linalool, elemol, geranyl isobutyrate, and the core targets of matrix metalloproteinase 13 (MMP13), S100 calcium binding protein A9 (S100A9), spleen tyrosine kinase (SYK), as well as the main signaling pathways, such as IL-17 and TNF. The results of molecular docking showed that the key components were stably bound to MMP13 and S100A9 of IL-17 signaling pathway. The results of pharmacological experiment confirmed that CLO could significantly inhibit the expression of IL-6 and TNF-α in serum of ALI rats, and decrease the expression of IL-17 protein in lung tissue of ALI rats. ConclusionCLO can achieve the therapeutic effect on ALI and protect lung tissue, the mechanism may be related to the decrease of the expression of IL-6 and TNF-α in serum and the inhibition of the activation of IL-17 signaling pathway in lung tissue of ALI rats.
3.Mechanisms of Dihuang (Rehmanniae Radix) in treating diabetic nephropathy complicated with depression based on network pharmacology
LEI Xing ; CHEN Qingyao ; WANG Xiaoping ; XU Jie ; GAO Yazhen ; LIN Qiaohong ; YE Zuwen ; ZHANG Jieyan ; SI Qin ; WANG Fang
Digital Chinese Medicine 2022;5(2):178-188
Objective To predict the molecular mechanism of Dihuang (Rehmanniae Radix) in the treatment of diabetic nephropathy (DN) complicated with depression based on network pharmacology. Methods The components of Dihuang (Rehmanniae Radix) were identified from the Integrated Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP), Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and relevant literature. The component targets were detected by combining the SwissTargetPrediction and PubChem databases. Disease targets were collected from the Therapeutic Target Database (TTD), DisGeNET, and Ensembl databases with “diabetic nephropathy” and “depression” as keywords. The disease-component targets were mapped using Venny 2.1.0 to obtain potential targets. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape 3.7.2. The co-expression genes of the key targets were collected based on the COXPRESdb 7.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for potential targets using R language. Target-component docking was verified and evaluated using Discovery Studio 4.5. Results According to the databases and literature reports, Dihuang (Rehmanniae Radix) contained 65 active components, and had 155 related targets for the treatment of DN complicated with depression. PPI screening showed that the key targets included serine/threonine protein kinase 1 (AKT1), signal transducer and activator transcription 3 (STAT3), interleukin 6 (IL-6), mitogen-activated protein kinase 1 (MAPK1), and vascular endothelial growth factor A (VEGFA), etc. GO enrichment analysis mainly involved biological processes, such as lipid metabolism, protein secretion regulation, cell homeostasis, and phosphatidylinositol 3 kinase activity. KEGG pathway enrichment analysis included the role of the AGE-RAGE signaling pathway in diabetic complements, insulin resistance (IR), neurotrophin signal path, Toll-like receptor signaling pathway, relaxin signaling pathway, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), etc. Molecular docking showed that the target had high affinity for stachyose, manninotriose, verbascose, nigerose, etc. Conclusion Based on network parmacology, this study preliminarily predict the effects of Dihuang (Rehmanniae Radix) in treating DN complicated with depression by regulating inflammation, glucose metabolism, nution nerve, etc.