1.Study of medical equipment configuration based on Markov-process
Lijun GUO ; Xiaofeng ZHANG ; Xueqiang TAO ; Xingyong WANG
Chinese Medical Equipment Journal 2017;38(3):21-24
Objective To explore medical equipment allocation with considerations on randomly distributed and dynamic injury conditions by analyzing injury conditions transition and medical equipment stochastic service process.Methods A casualty array change model was established by injury conditions evolution analysis,Poisson process and Markov chain.Medical equipment stochastic service processes in medical facilities were probed,and the service rules were constructed.Expert investigation was carried out to acquire conditions transition indexes and to determine the vectors for conditions transition without manual intervention and their changes after treatment,then simulation tools were used to optimize medical equipment allocation.Results The emergency treatment table in some field medical station was considered as the subject,and the optimum allocation was proposed for emergency treatment table with practical data and simulation calculation.Conclusion The emergency treatment table allocation proposed was similar to the actual one in the medical station.Markov-process-based medical equipment allocation responses injury conditions changes and the fluctuation of treatment sequence,which has the result reliable and the method versatile and practical,and lays a foundation for medical equipment allocation and optimization.
2.TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway
Fen XUE ; Lifen LIU ; Xueqiang TAO ; Weipei ZHU
Journal of Gynecologic Oncology 2024;35(5):e64-
Objective:
Src homology phosphotyrosin phosphatase 2 (SHP2) has been implicated in the progression of several cancer types. However, its function in endometrial cancer (EC) remains unclear. Here, we report that the ten-eleven translocation 3 (TET3)-mediated DNA demethylation modification is responsible for the oncogenic role of SHP2 in EC and explore the detailed mechanism.
Methods:
The transcriptomic differences between EC tissues and control tissues were analyzed using bioinformatics tools, followed by protein-protein interaction network establishment. EC cells were treated with shRNA targeting SHP2 alone or in combination with isoprocurcumenol, an epidermal growth factor receptor (EGFR) signaling activator.The cell biological behavior was examined using cell counting kit-8, colony formation, flow cytometry, scratch assay, and transwell assays, and the median inhibition concentration values to medroxyprogesterone acetate/gefitinib were calculated. The binding of TET3 to the SHP2 promoter was verified. EC cells with TET3 knockdown and combined with SHP2 overexpression were selected to construct tumor xenografts in mice.
Results:
TET3 and SHP2 were overexpressed in EC cells. TET3 bound to the SHP2 promoter, thereby increasing the DNA hydroxymethylation modification and activating SHP2 to induce the EGFR/extracellular signal-regulated kinase (ERK) pathway. Knockdown of TET3 or SHP2 inhibited EC cell malignant aggressiveness and impaired the EGFR/ERK pathway. Silencing of TET3 inhibited the tumorigenic capacity of EC cells, and ectopic expression of SHP2 or isoprocurcumenol reversed the inhibitory effect of TET3 knockdown on the biological activity of EC cells.
Conclusion
TET3 promoted the DNA demethylation modification in the SHP2 promoter and activated SHP2, thus activating the EGFR/ERK pathway and leading to EC progression.
3.TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway
Fen XUE ; Lifen LIU ; Xueqiang TAO ; Weipei ZHU
Journal of Gynecologic Oncology 2024;35(5):e64-
Objective:
Src homology phosphotyrosin phosphatase 2 (SHP2) has been implicated in the progression of several cancer types. However, its function in endometrial cancer (EC) remains unclear. Here, we report that the ten-eleven translocation 3 (TET3)-mediated DNA demethylation modification is responsible for the oncogenic role of SHP2 in EC and explore the detailed mechanism.
Methods:
The transcriptomic differences between EC tissues and control tissues were analyzed using bioinformatics tools, followed by protein-protein interaction network establishment. EC cells were treated with shRNA targeting SHP2 alone or in combination with isoprocurcumenol, an epidermal growth factor receptor (EGFR) signaling activator.The cell biological behavior was examined using cell counting kit-8, colony formation, flow cytometry, scratch assay, and transwell assays, and the median inhibition concentration values to medroxyprogesterone acetate/gefitinib were calculated. The binding of TET3 to the SHP2 promoter was verified. EC cells with TET3 knockdown and combined with SHP2 overexpression were selected to construct tumor xenografts in mice.
Results:
TET3 and SHP2 were overexpressed in EC cells. TET3 bound to the SHP2 promoter, thereby increasing the DNA hydroxymethylation modification and activating SHP2 to induce the EGFR/extracellular signal-regulated kinase (ERK) pathway. Knockdown of TET3 or SHP2 inhibited EC cell malignant aggressiveness and impaired the EGFR/ERK pathway. Silencing of TET3 inhibited the tumorigenic capacity of EC cells, and ectopic expression of SHP2 or isoprocurcumenol reversed the inhibitory effect of TET3 knockdown on the biological activity of EC cells.
Conclusion
TET3 promoted the DNA demethylation modification in the SHP2 promoter and activated SHP2, thus activating the EGFR/ERK pathway and leading to EC progression.
4.TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway
Fen XUE ; Lifen LIU ; Xueqiang TAO ; Weipei ZHU
Journal of Gynecologic Oncology 2024;35(5):e64-
Objective:
Src homology phosphotyrosin phosphatase 2 (SHP2) has been implicated in the progression of several cancer types. However, its function in endometrial cancer (EC) remains unclear. Here, we report that the ten-eleven translocation 3 (TET3)-mediated DNA demethylation modification is responsible for the oncogenic role of SHP2 in EC and explore the detailed mechanism.
Methods:
The transcriptomic differences between EC tissues and control tissues were analyzed using bioinformatics tools, followed by protein-protein interaction network establishment. EC cells were treated with shRNA targeting SHP2 alone or in combination with isoprocurcumenol, an epidermal growth factor receptor (EGFR) signaling activator.The cell biological behavior was examined using cell counting kit-8, colony formation, flow cytometry, scratch assay, and transwell assays, and the median inhibition concentration values to medroxyprogesterone acetate/gefitinib were calculated. The binding of TET3 to the SHP2 promoter was verified. EC cells with TET3 knockdown and combined with SHP2 overexpression were selected to construct tumor xenografts in mice.
Results:
TET3 and SHP2 were overexpressed in EC cells. TET3 bound to the SHP2 promoter, thereby increasing the DNA hydroxymethylation modification and activating SHP2 to induce the EGFR/extracellular signal-regulated kinase (ERK) pathway. Knockdown of TET3 or SHP2 inhibited EC cell malignant aggressiveness and impaired the EGFR/ERK pathway. Silencing of TET3 inhibited the tumorigenic capacity of EC cells, and ectopic expression of SHP2 or isoprocurcumenol reversed the inhibitory effect of TET3 knockdown on the biological activity of EC cells.
Conclusion
TET3 promoted the DNA demethylation modification in the SHP2 promoter and activated SHP2, thus activating the EGFR/ERK pathway and leading to EC progression.
5.Status of HVPG clinical application in China in 2021
Wen ZHANG ; Fuquan LIU ; Linpeng ZHANG ; Huiguo DING ; Yuzheng ZHUGE ; Jitao WANG ; Lei LI ; Guangchuan WANG ; Hao WU ; Hui LI ; Guohong CAO ; Xuefeng LU ; Derun KONG ; Lin SUN ; Wei WU ; Junhui SUN ; Jiangtao LIU ; He ZHU ; Dongliang LI ; Wuhua GUO ; Hui XUE ; Yu WANG ; Jiancuo GENGZANG ; Tian ZHAO ; Min YUAN ; Shirong LIU ; Hui HUAN ; Meng NIU ; Xin LI ; Jun MA ; Qingliang ZHU ; Wenbo GUO ; Kunpeng ZHANG ; Xiaoliang ZHU ; Birun HUANG ; Jianan LI ; Weidong WANG ; Hongfeng YI ; Qi ZHANG ; Long GAO ; Guo ZHANG ; Zhongwei ZHAO ; Kai XIONG ; Zexin WANG ; Hong SHAN ; Mingsheng LI ; Xueqiang ZHANG ; Haibin SHI ; Xiaogang HU ; Kangshun ZHU ; Zhanguo ZHANG ; Hong JIANG ; Jianbo ZHAO ; Mingsheng HUANG ; Wenyong SHEN ; Lin ZHANG ; Feng XIE ; Zhiwei LI ; Changlong HOU ; Shengjuan HU ; Jianwei LU ; Xudong CUI ; Ting LU ; Shaoqi YANG ; Wei LIU ; Junping SHI ; Yanming LEI ; Jinlun BAO ; Tao WANG ; Weixin REN ; Xiaoli ZHU ; Yong WANG ; Lei YU ; Qiang YU ; Huiling XIANG ; Wenqiang LUO ; Xiaolong QI
Chinese Journal of Hepatology 2022;30(6):637-643
Objective:The investigation and research on the application status of Hepatic Venous Pressure Gradient (HVPG) is very important to understand the real situation and future development of this technology in China.Methods:This study comprehensively investigated the basic situation of HVPG technology in China, including hospital distribution, hospital level, annual number of cases, catheters used, average cost, indications and existing problems.Results:According to the survey, there were 70 hospitals in China carrying out HVPG technology in 2021, distributed in 28 provinces (autonomous regions and municipalities directly under the central Government). A total of 4 398 cases of HVPG were performed in all the surveyed hospitals in 2021, of which 2 291 cases (52.1%) were tested by HVPG alone. The average cost of HVPG detection was (5 617.2±2 079.4) yuan. 96.3% of the teams completed HVPG detection with balloon method, and most of the teams used thrombectomy balloon catheter (80.3%).Conclusion:Through this investigation, the status of domestic clinical application of HVPG has been clarified, and it has been confirmed that many domestic medical institutions have mastered this technology, but it still needs to continue to promote and popularize HVPG technology in the future.