1.ARID1B Gene Deletion Promotes the Proliferation, Migration and Invasion of NSCLC Cells.
Chinese Journal of Lung Cancer 2025;28(3):165-175
BACKGROUND:
Abnormalities of the switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling complex are closely related to various cancers, and ARID1B (AT-rich interaction domain 1B) is one of the core subunits of the SWI/SNF complex. Mutations or copy number deletions of the ARID1B gene are associated with impaired DNA damage response and altered chromatin accessibility. However, whether ARID1B deficiency affects the proliferation, migration and invasion abilities of non-small cell lung cancer (NSCLC) cells and its molecular mechanisms remain poorly understood. This study aims to reveal the regulatory role of ARID1B gene deletion on the malignant phenotype of NSCLC cells and its molecular mechanism.
METHODS:
Online databases were used to analyze the relationship between ARID1B and the prognosis of patients with lung cancer, and the expression levels of ARID1B in lung cancer tissues. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) technology was employed to construct stable ARID1B gene knockout (KO) cell lines. The plate colony formation assay was used to detect cell proliferation, and the Transwell cell migration and invasion assays were used to detect changes in cell migration ability. RNA-Seq was utilized for the expression and enrichment analysis of differentially expressed genes. Western blot (WB) was used to verify the knockout effect of the ARID1B gene and to detect the expression changes of epithelial-mesenchymal transition (EMT) markers and mitogen-activated protein kinases (MAPK) signaling pathway-related proteins. Nude mouse tumor models were constructed and the tumorigenic abilities of control and ARID1B-deficient cells were compared.
RESULTS:
Patients with low ARID1B expression have poor overall survival. ARID1B is differentially expressed in lung cancer and normal tissues, and its expression level being lower in cancer cells. ARID1B-deficient cells had significantly enhanced in vitro proliferation, migration and invasion abilities. In animal experiments, the tumor formation speed of ARID1B gene deficient cells was significantly accelerated. Enrichment analysis of RNA-Seq results revealed that the differentially expressed genes were mainly enriched in MAPK, phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) and other signaling pathways. WB experiments demonstrated that the expressions of E-cadherin, N-cadherin and Vimentin changed in ARID1B gene deficient cells, and the expressions of MAPK and p-MAPK was increased.
CONCLUSIONS
The A549-ARID1B KO and PC9-ARID1B KO cell lines were successfully established. The ARID1B-deficient cell lines demonstrated high migration, invasion and proliferation potential at both in vitro and in vivo biological behavior levels and at the transcriptome sequencing level. The changes in the expression of EMT markers and the activation of the MAPK signaling pathway suggest possible metastasis mechanisms of ARID1B-deficient NSCLC.
Humans
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Lung Neoplasms/metabolism*
;
Animals
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Transcription Factors/metabolism*
;
Neoplasm Invasiveness
;
Mice
;
DNA-Binding Proteins/metabolism*
;
Gene Deletion
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Mice, Nude
;
Gene Expression Regulation, Neoplastic
2.ADAR1 Regulates the ERK/c-FOS/MMP-9 Pathway to Drive the Proliferation and Migration of Non-small Cell Lung Cancer Cells.
Li ZHANG ; Xue PAN ; Wenqing YAN ; Shuilian ZHANG ; Chiyu MA ; Chenpeng LI ; Kexin ZHU ; Nijia LI ; Zizhong YOU ; Xueying ZHONG ; Zhi XIE ; Zhiyi LV ; Weibang GUO ; Yu CHEN ; Danxia LU ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2025;28(9):647-657
BACKGROUND:
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) binds to double-stranded RNA and catalyzes the deamination of adenosine (A) to inosine (I). The functional mechanism of ADAR1 in non-small cell lung cancer (NSCLC) remains incompletely understood. This study aimed to investigate the prognostic significance of ADAR1 in NSCLC and to elucidate its potential role in regulating tumor cell proliferation and migration.
METHODS:
Data from The Cancer Genome Atlas (TCGA) and cBioPortal were analyzed to assess the correlation between high ADAR1 expression and clinicopathological features as well as prognosis in lung cancer. We performed Western blot (WB), cell proliferation assays, Transwell invasion/migration assays, and nude mouse xenograft modeling to examine the phenotypic changes and molecular mechanisms induced by ADAR1 knockdown. Furthermore, the ADAR1 p150 overexpression model was utilized to validate the proposed mechanism.
RESULTS:
ADAR1 expression was significantly elevated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared with adjacent non-tumor tissues (LUAD: P=3.70×10-15, LUSC: P=0.016). High ADAR1 expression was associated with poor prognosis (LUAD: P=2.03×10-2, LUSC: P=2.81×10-2) and distant metastasis (P=0.003). Gene Set Enrichment Analysis (GSEA) indicated that elevated ADAR1 was associated with mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway activation, matrix metalloproteinase-9 (MMP-9) expression, and cell adhesion. ADAR1 and MMP-9 levels showed a strongly positive correlation (P=6.45×10-34) in 10 lung cancer cell lines, highest in H1581. Knockdown of ADAR1 in H1581 cells induced a rounded cellular morphology with reduced pseudopodia. Concomitantly, it suppressed cell proliferation, invasion, migration, and in vivo tumorigenesis. It also suppressed ERK phosphorylation and downregulated cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-FOS), MMP-9, N-cadherin, and Vimentin. Conversely, ADAR1 p150 overexpression in PC9 cells enhanced ERK phosphorylation and increased c-FOS and MMP-9 expression.
CONCLUSIONS
High ADAR1 expression is closely associated with poor prognosis and distant metastasis in NSCLC patients. Mechanistically, ADAR1 may promote proliferation, invasion, migration, and tumorigenesis in lung cancer cells via the ERK/c-FOS/MMP-9 axis.
Humans
;
Lung Neoplasms/physiopathology*
;
Adenosine Deaminase/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Cell Proliferation
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Cell Movement
;
Animals
;
Mice
;
RNA-Binding Proteins/genetics*
;
Female
;
Male
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-fos/genetics*
;
Middle Aged
;
MAP Kinase Signaling System
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Extracellular Signal-Regulated MAP Kinases/genetics*
3.SWI/SNF Complex Gene Mutations Promote the Liver Metastasis of Non-small Cell Lung Cancer Cells in NSI Mice.
Lingling GAO ; Zhi XIE ; Shouheng LIN ; Zhiyi LV ; Wenbin ZHOU ; Ji CHEN ; Linlin ZHU ; Li ZHANG ; Penghui ZENG ; Xiaodan HUANG ; Wenqing YAN ; Yu CHEN ; Danxia LU ; Shuilian ZHANG ; Weibang GUO ; Peng LI ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2023;26(10):753-764
BACKGROUND:
The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex.
METHODS:
The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases.
RESULTS:
WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group.
CONCLUSIONS
This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.
Animals
;
Mice
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Liver Neoplasms/genetics*
4.Study on Formaldehyde Pollution in Indoor Air of the Newly Decorated House
Lingling WANG ; Xuchao ZHU ; Kexin DUO
Journal of Environment and Health 1992;0(04):-
Objective To investigate the status quo of formaldehyde pollution in indoor air of the decorated houses. Methods 54 apartments that have been decorated for one month to almost two years and 52 roughcast apartments were selected and the concentrations of formaldehyde were determined by acetylacetone spectrophotometry. Results The results showed that in the same time after decorating, there was significant difference of formaldehyde concentrations between higher and lower temperature periods (P

Result Analysis
Print
Save
E-mail