1.Clinical Observation of Cinobufacin Capsules Combined with Radiotherapy in the Treatment of Median and Advanced Nasopharyngeal Carcinoma
Jinhua LEI ; Xiongjie YU ; Quanshu DI ; Hexing WU ; Xinhui LI ; Fengjun CAO
China Pharmacy 2017;28(5):633-635
OBJECTIVE:To investigate the clinical efficacy and safety of Cinobufacin capsules combined with radiotherapy in the treatment of median and advanced nasopharyngeal carcinoma. METHODS:Ninety-five patients with median and advanced naso-pharyngeal carcinoma in cancer center of our hospital during 2011-2012 were analyzed retrospectively,and then divided into con-trol group (57 cases) and observation group (38 cases) according to therapy plan. Control group received radiotherapy alone, while observation group was additionally given Cinobufacin capsule 0.5 g,tid,till the end of radiotherapy. A treatment course last-ed for 4 weeks. The prolonged radiotherapy were compared between 2 groups. Clinical response rate was observed in 2 group,and 1-year and 3-year survival rate and the occurrence of ADR were followed up. RESULTS:The proportion of prolonged radiotherapy was 89.47% in control group,which was significantly higher than 52.63% of observation group,with statistical significance(P<0.05). At the end of therapy and one month after therapy,clinical total response rates of observation group were 81.58% and 63.16%,which were significantly higher than 70.18% and 45.61% of control group,with statistical significance (P<0.05). The incidence of white blood cell lowering,hemoglobin lowering,local side effect of radiotherapy, nasopharyngeal dysphagia/odyno-phagia in observation group were significantly lower than in control group,with statistical significance (P<0.05). There was no statistical significance in survival rate between 2 groups in 1st-year and 3rd-year follow-up (P>0.05). CONCLUSIONS:Cinobu-facin capsule combined with radiotherapy can significantly relieve the side effects of radiotherapy in median and advanced nasopha-ryngeal carcinoma patients.
2.Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats.
Yumei GONG ; Yuying ZHAI ; Xinyu DU ; Peirun SONG ; Haoxuan XU ; Qichen ZHANG ; Xiongjie YU
Neuroscience Bulletin 2022;38(7):785-795
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception/physiology*
;
Geniculate Bodies
;
Rats
;
Rats, Wistar
;
Thalamic Nuclei/physiology*
3. Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage
Chaoran XU ; Huaijun CHEN ; Shengjun ZHOU ; Chenjun SUN ; Xiaolong XIA ; Yucong PENG ; Jianfeng ZHUANG ; Xiongjie FU ; Hanhai ZENG ; Hang ZHOU ; Yang CAO ; Qian YU ; Yin LI ; Libin HU ; Guoyang ZHOU ; Feng YAN ; Gao CHEN ; Jianru LI
Neuroscience Bulletin 2021;37(10):1412-1426
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
4.Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage.
Chaoran XU ; Huaijun CHEN ; Shengjun ZHOU ; Chenjun SUN ; Xiaolong XIA ; Yucong PENG ; Jianfeng ZHUANG ; Xiongjie FU ; Hanhai ZENG ; Hang ZHOU ; Yang CAO ; Qian YU ; Yin LI ; Libin HU ; Guoyang ZHOU ; Feng YAN ; Gao CHEN ; Jianru LI
Neuroscience Bulletin 2021;37(10):1412-1426
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
Anilides/pharmacology*
;
Cerebral Hemorrhage/drug therapy*
;
Hematoma/drug therapy*
;
Humans
;
Macrophages
;
Microglia
;
Neuroprotection
;
PPAR gamma
;
Retinoid X Receptor alpha