1.Early nutritional support in brain operation patients
Wenxin YANG ; Zhengjiang ZHONG ; Hong SHEN ; Huaiyi ZHAN ; Xiaomei CHENG ; Xingxin HU
Parenteral & Enteral Nutrition 2004;0(06):-
0.05) between two groups. Abdominal distention and diarrhea occurred in 6 patients in observed group. Nitrogen balance, PA, TFN, IgA, IgG and IgM after nutritional support were better than those before nutritional support in two groups. Nitrogen balance, PA, TFN, IgA, IgG and IgM were better in observed group than those in the control group. Conclusions:Early nutritional support can improve metabolic status,the immune function and the nitrogen balance in brain operation patients.
2.Improvement mechanism study of kushenol F on ulcerative colitis mice by regulating gut microbiota and immune response
Xudong HE ; Chengzhu SONG ; Haoyu NI ; Yunkai HU ; Min LI ; Dajun CHEN ; Wentao SU ; Jie YU ; Xingxin YANG
China Pharmacy 2024;35(17):2088-2095
OBJECTIVE To explore the action mechanism of kushenol F (KSCF) in treating ulcerative colitis (UC) in mice. METHODS The potential targets of KSCF intervening in UC were predicted with network pharmacology and molecular docking. C57BL/6J mice were randomly divided by body weight into model group, positive control group (sulfasalazine, 703 mg/kg), KSCF group (100 mg/kg), and normal group, with 6 mice per group. The UC model of mice was induced by dextran sulfate sodium solution. During the modeling period, the mice were given relevant medicine intragastrically, once a day, for 7 consecutive days. After the last administration, the disease activity index (DAI) of the mice was scored; the length of the mice’s colon was measured; pathological changes in the colon tissue of mice were observed; the levels of lipopolysaccharide (LPS) in serum, myeloperoxidase (MPO), nitric oxide (NO) and superoxide dismutase (SOD) in the colon were detected in mice; the expression levels of occludin and ZO-1 in colon tissue of mice were detected; the proportions of CD3+T, CD4+T, and CD8+T lymphocytes in the spleen and the ratio of CD4+/CD8+ were detected; changes in colonic microbiota were analyzed by 16S rDNA sequencing. RESULTS Results of network pharmacology indicated that KSCF may treat UC by regulating signaling pathways such as phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and nuclear factor kappa B (NF- κB). Molecular docking results showed that KSCF bound most stably with NF-κB p65 protein. Animal experiment results demonstrated that, compared with the model group, the pathological characteristics of colon tissue in mice were improved in KSCF group. DAI scores, serum levels of LPS, the levels of MPO,NF-κB p65 phosphorylation and NLRP3 protein expression in the colon, and the proportion of CD8+T lymphocytes in the spleen were reduced significantly (P<0.05). Body weight, SOD levels, expression levels of occludin and ZO-1 in the colon, proportions of CD3+T and CD4+T lymphocytes, and the CD4+/CD8+ ratio in the spleen were significantly increased (P<0.05); the abundance of Firmicutes, Actinobacteria, Akkermansia, and Lactobacillus genera were increased, while Proteobacteria decreased; the microbial community structure tended towards that of the normal group. CONCLUSIONS KSCF alleviates UC by restoring intestinal microbial imbalance, enhancing immune response, and inhibiting colonic inflammatory responses, thereby improving intestinal barrier integrity.
3.Intervention effect of kushenol F on ulcerative colitis mice
Xudong HE ; Haoyu NI ; Jinbiao HE ; Min LI ; Yunkai HU ; Dihong GONG ; Jinling YAO ; Jie YU ; Xingxin YANG
China Pharmacy 2024;35(4):419-424
OBJECTIVE To investigate the intervention effect of kushenol F (KSC-F) on ulcerative colitis (UC) mice. METHODS Totally 30 male C57BL/6J mice were randomly divided into the normal group, model group, positive drug group (sulfasalazine, 703 mg/kg), KSC-F 50 mg/kg group (KSC-F50 group), and KSC-F 100 mg/kg group (KSC-F100 group), with 6 mice in each group. Except for the normal group, the mice in the remaining groups were given 3% dextran sulfate sodium solution continuously for 7 days to induce UC model. Concurrently, administration groups received corresponding drug solution intragastrically, once a day, for 10 consecutive days. During the experiment, the changes in body weight and bowel movements of the mice were observed. Disease activity index scoring was performed after the last administration. The histopathological morphology of colonic tissue was examined. The levels of inflammatory factors in the serum and colon tissue were measured. Additionally, the mRNA expression of inflammatory factors, and the protein expressions of inflammation-related proteins [interleukin-1β (IL-1β), forkhead box O1(FOXO1), phosphoinositide 3-kinase(PI3K), phosphorylated PI3K(p-PI3K), p38 mitogen-activated protein kinase(p38 MAPK), phosphorylated p38 MAPK(p-p38 MPAK) and phosphorylated protein kinase B(p- Akt)] were determined in colonic tissue. RESULTS KSC-F could alleviate weight loss and colonic tissue damage in UC mice. KSC- F reduced the levels of IL-1β, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) in serum, as well as IL-1β, IL-6, IL-17 and TNF- α in colonic tissue to varying degrees and increased the levels of IL-10 in both serum and colonic tissue (P<0.05 or P<0.01). Moreover, KSC-F decreased the expression levels of IL-1β, IL-17 and TNF-α mRNA, as well as p-PI3K, p-p38 MAPK, and p- Akt proteins in colonic tissue to varying degrees, and increased the expression levels of IL-10 mRNA and FOXO1 protein in colonic tissue (P<0.05 or P<0.01). CONCLUSIONS KSC-F effectively alleviates UC symptoms in mice by inhibiting PI3K, Akt and p38 MAPK activation, mitigating the release of pro-inflammatory factors such as IL-1β, IL-6, TNF- α,promoting the anti-inflammatory factor IL-10 secretion, and reducing inflammation-induced colonic tissue damage.