1.Diagnosis and treatment of thyroid nodule: standard discussion
Kai HUANG ; Tao LIN ; Xingwu YANG ; Chunming YANG
Journal of Endocrine Surgery 2011;05(2):95-98
Objective To discuss the standard diagnosis and treatment for thyroid nodule.Methods 2 581 patients with thyroid nodule from 2005 to 2009 were studied.Common methods of examination and treatment were analyzed to avoid over-examination and over-treatment.Results 90%of the patients underwent ultrasound examination with a 92.9%sensitivity and 44.3%specificity when there were two or more risk characters.All patients underwent certain kinds of surgery according to their clinical conditions.The recurrence rate was 4%two and half years after lateral thyroid adenectomy or thyroid surgery without excision of thyroid isthmus.Conclusions There are many approaches to thyroid nodule examination and treatment,in which ultrasound is recommended for preoperative examination because of its higher sensitivity,specificity and lower cost,and surgery is still the most useful and effective treatment.Choosing the proper method for thyroid nodule diagnosis and treatment is the key point to avoid over-examination and over-treatment.
2.Dosimetric verification of volumetric modulated arc therapy in nasopharyngeal carcinoma using COMPASS 3D patient anatomy based system
Penggang BAI ; Qixin LI ; Kaiqiang CHEN ; Xiuchun ZHANG ; Yazhi WANG ; Xingwu HUANG
Chinese Journal of Radiological Medicine and Protection 2012;32(3):304-307
Objective To investigate the dosimetric performance of COMPASS system,a novel 3D quality assurance system for the verification of nasopharyngeal carcinoma volumetric modulated therapy (VMAT) treatment plan.Methods Eight VMAT treatment plans of nasopharyngeal carcinoma patients were performed with MasterPlan,a treatment planning system (TPS),and then these treatment plans were sent to the COMPASS and MOSAIQ system,a coherent control system,respectively.Comparison of the COMPASS reconstructed dose versus TPS dose was conducted by using the dose volume-based indices:dose received by 95% volume of target ( D95% ),mean dose ( Dmean ) and γ pass rate,dose to the 1% of the spinal cord and brain stem volume ( D1% ),mean dose of leaf and right parotid ( Dmean ),and the volume received 30 Gy for left and right parotid (V30).COMPASS can reconstruct dose with the real measured delivery fluence after detector commissioning.Results The average dose difference for the target volumes was within 1%,the difference for D95 was within 3% for most treatment plans,and the γ pass rate was higher than 95% for all target volumes.The average differences for the D1% values of spinal cord and brain stem were ( 4.3 ± 3.0) % and ( 5.9± 2.9 ) % respectively,and the average differences for the Dmean values of spinal cord and brain stem were ( 5.3 ± 3.0 ) % and ( 8.0 ± 3.5 ) % respectively.In general the COMPASS measured doses were all smaller than the TPS calculated doses for these two organs.The average differences of the Dmean values of the left and right parotids were( 6.1± 3.1 ) % and ( 4.7 ± 4.4 ) % respectively,and the average differences of the V30 values of the left and right parotids were (9.4 ± 7.5 ) % and (9.4 ± 9.9)% respectively.Conclusions An ideal tool for the VMAT verification,the patient anatomy based COMPASS 3D dose verification system can check the dose difference between the real delivery and TPS calculation directly for each individual organ,either target volumes or critical organs.
3.Application of single sperm sequencing for the preimplantation genetic testing of a Chinese family affected with Spinal muscular atrophy.
Jia CHEN ; Xingwu WU ; Ge CHEN ; Pengpeng MA ; Wan LU ; Zhihui HUANG ; Cailin XIN ; Yan ZHAO ; Qiongfang WU ; Yanqiu LIU
Chinese Journal of Medical Genetics 2023;40(2):148-154
OBJECTIVE:
To assess the value of single sperm sequencing in preimplantation genetic testing for monogenic disease (PGT-M).
METHODS:
A Chinese couple with two children whom had died of Spinal muscular atrophy (SMA) and attended the Jiangxi Provincial Maternal and Child Health Care Hospital in June 2020 was selected as the subject. Eleven single sperm samples were isolated by mechanical immobilization and subjected to whole genome amplification. Real-time PCR and Sanger sequencing were used to detect the SMN1 variants in the single sperm samples. Genomic DNA of the wife, her parents and the husband, as well as one single sperm sample harboring the SMN1 variant and two single sperm samples without the variant were used for the linkage analysis. Targeted capture and high-throughput sequencing were carried out to test 100 single nucleotide polymorphisms distributed within 2 Mb up- and downstream the variant site. The haplotypes linked with the SMN1 variants were determined by linkage analysis. Blastocyst embryos were harvested after fertilizing by intracytoplasmic sperm injection. Cells from the trophoblasts of each embryo were biopsied and subjected to whole genome amplification and targeted capture and high-throughput sequencing to determine their carrier status. Chromosomal aneuploidy of wild-type embryos was excluded. An euploid embryo of high quality was transferred. Amniotic fluid sample was taken at 18 weeks of gestation to confirm the status of the fetus.
RESULTS:
Genetic testing showed that the couple both had deletion of exons 7 ~ 8 of the SMN1 gene. The wife has inherited the deletion from her father, while the husband was de novo. The haplotypes of the husband were successfully constructed by single sperm sequencing. Preimplantation genetic testing has indicated that 5 embryos had harbored the heterozygous variant, 4 embryos were of the wild type, among which 3 were euploid. Prenatal diagnosis during the second trimester of pregnancy has confirmed that the fetus did not carry the deletion.
CONCLUSION
By single sperm sequencing and PGT-M, the birth of further affected child has been successfully avoided.
Humans
;
Pregnancy
;
Female
;
Child
;
Male
;
Preimplantation Diagnosis
;
East Asian People
;
Semen
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Aneuploidy
;
Blastocyst/pathology*
;
High-Throughput Nucleotide Sequencing
;
Spermatozoa