1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
3.Chemical knockdown of Keap1 and homoPROTAC-ing allergic rhinitis.
Jianyu YAN ; Tianyu WANG ; Ruizhi YU ; Lijuan XU ; Hongming SHAO ; Tengfei LI ; Zhe WANG ; Xudong CHA ; Zhenyuan MIAO ; Chengguo XING ; Ke XU ; Huanhai LIU ; Chunlin ZHUANG
Acta Pharmaceutica Sinica B 2025;15(8):4137-4155
Allergic rhinitis (AR), a globally prevalent immune-mediated inflammatory condition, is still an incurable disease. In the present study, we have validated the impact of the Kelch-like ECH associated protein 1 (Keap1)-related oxidative stress and inflammatory response in clinical AR patient peripheral blood and nasal swab samples, emphasizing the biological relevance of Keap1 and AR. Targeting Keap1 -nuclear factor erythroid 2-related factor 2 (Nrf2) related anti-oxidative stress may be effective for AR intervention. Drawing inspiration from the Keap1 homodimerization and the E3 ligase characteristics, we herein present a design of novel bivalent molecules for chemical knockdown of Keap1. For the first time, we characterized ternary complexes of Keap1 dimer and one molecule of bivalent compounds. The best bivalent molecule 8 encompasses robust capacity to degrade Keap1 as a homoPROTACKEAP1. It efficaciously suppresses inflammatory cytokines in extensively different cells, including human nasal epithelial cells. Moreover, in an AR mouse model, we confirmed that the chemical degradation induced by homoPROTACKEAP1 led to therapeutic benefits in managing AR symptoms, oxidative stress and inflammation. In summary, our findings underscore the efficacy of targeting the Keap1 system through the homoPROTAC-ing technology as an innovative and promising treatment strategy for the incurable allergic disorders.
4.Research progress on indirect energy measurement in guiding energy and nutritional application in nutritional support therapy for critically ill patients.
Yinqiang FAN ; Jun YAN ; Ning WEI ; Jianping YANG ; Hongmei PAN ; Yiming SHAO ; Jun SHI ; Xiuming XI
Chinese Critical Care Medicine 2025;37(8):794-796
Nutritional support therapy is one of the extremely important treatment methods for patients in the intensive care unit. Timely and effective nutritional support regimens can improve patients' immune function, reduce complications, and optimize clinical outcomes. Energy expenditure is influenced by multiple factors, including patients' baseline characteristics (such as physical condition, gender, age) and dynamic changes in indicators (such as body temperature, nutritional support regimens, and therapeutic interventions). The currently recognized "gold standard" for accurately assessing energy metabolism in clinical practice is the indirect calorimetry system, also known as the metabolic cart. This device monitors carbon dioxide production and oxygen consumption in real time and uses specific algorithms to estimate the metabolic proportions of the three major nutrients (carbohydrates, fats, and proteins) in energy expenditure. An appropriate nutrient ratio helps maintain the balance between supply and demand in the body's nutritional metabolism. In the management of critically ill patients, the application of the metabolic cart enables personalized nutritional therapy, avoiding over- or under-supply of energy and optimizing the use of medical resources. Furthermore, with real-time, quantitative data support from the energy metabolism monitoring system, clinicians can develop more precise nutritional intervention strategies, thereby improving patient prognosis. This article provides a systematic review of the technical features of the metabolic cart and its application value in various critical care scenarios, aiming to offer a reference for indirect calorimetry in clinical practice.
Humans
;
Critical Illness/therapy*
;
Nutritional Support
;
Energy Metabolism
;
Calorimetry, Indirect
5.Air Pollution and Cardiac Biomarkers in Heart Failure: A Scoping Review.
Gang LI ; Yan Hui JIA ; Yun Shang CUI ; Shao Wei WU ; Tong Yu MA ; Yun Xing JIANG ; Hong Bing XU ; Yu Hui ZHANG ; Mary A FOX
Biomedical and Environmental Sciences 2025;38(11):1430-1443
Ambient air pollution is increasingly being recognized as a risk factor for heart failure; however, its effects on cardiac biomarkers remain unclear. This scoping review assessed the existing evidence on the association between air pollution and cardiac biomarkers in heart failure, described the key concepts, synthesized data, and identified research gaps. Following the PRISMA-ScR guidelines, PubMed, Embase, Web of Science, and CNKI databases were searched for studies on air pollution, heart failure, and biomarkers. A total of 765 records were screened, and 81 full texts were assessed for eligibility, resulting in 15 studies. The results showed that the exposure to particulate matter was associated with elevated N-terminal pro-B-type natriuretic peptide and troponin levels. Several studies have linked particulate matter exposure to a higher cardiovascular risk and heart failure biomarkers. Inflammatory and oxidative stress markers were consistently elevated across studies, supporting the biological relevance of these associations. However, few studies have focused specifically on populations with heart failure or clinically relevant biomarkers, and the evidence for gaseous pollutants remains inconclusive. These findings highlight the need to integrate environmental risk assessment into heart failure care and inform policy efforts to reduce the pollution-related cardiovascular burden. Further research should address these gaps through improved exposure assessments and the integration of mechanistic evidence.
Heart Failure/epidemiology*
;
Biomarkers/metabolism*
;
Humans
;
Air Pollution/adverse effects*
;
Air Pollutants/adverse effects*
;
Particulate Matter/adverse effects*
;
Environmental Exposure
;
Natriuretic Peptide, Brain/blood*
;
Oxidative Stress
;
Troponin/blood*
6.SARS-CoV-2 PLpro negatively regulates interferon-β immune pathway induced by DDX3
Mingyu WANG ; Xiaojuan CHEN ; Huan MENG ; Liting SHAO ; Yuanyuan JIAO ; Wenqian LI ; Ping LI ; Yaling XING
Military Medical Sciences 2024;48(6):453-460
Objective To discover the host factor interacting with severe acute respiratory syndrome coronavirus-2(SARS-CoV-2)papain-like protease(PLpro)and explore the potential mechanism.Methods The second-generation proximity-dependent biotin identification(BioID2)approach combined with mass spectrometry analysis was used to search for the potential host factors.Immunofluorescence and co-immunoprecipitation(Co-IP)assay were used to verify the interactions between DEAD-box helicase 3(DDX3)and PLpro.The influence of PLpro on DDX3-inhibitor of kappa B kinase ε(IKKε)-TANK-binding kinase 1(TBK1)and DDX3-mitochondrial antiviral signaling protein(MAVS)complexes was also investigated by Co-IP.The effect of PLpro on interferon-β(IFN-β)immune pathway and the protease activity on substrates were studied via luciferase activity assay.Results DDX3 could co-locate and interact with PLpro intracellularly.PLpro might possibly inhibit both the formation of DDX3-MAVS complex and the interactions between DDX3-IKK-ε-TBK1.PLpro could negatively regulate type Ⅰ interferon pathway.Overexpression of DDX3 could lead to a significant increase in the cleavage activity of PLpro/PLP-TM that might be significantly decreased in case of inventions with DDX3 expressions.Conclusion DDX3 may be one of the host factors that interact with SARS-CoV-2 PLpro.PLpro negatively regulates IFN-β immune pathway induced by DDX3,which may provide a favorable immune environment for virus replication.
7.Classification and Application of Surface-enhanced Raman Spectroscopy Substrates
Shao-Yun CHEN ; Xing-Ying ZHANG ; Ben LIU ; Zhong-Cai WANG ; Cheng-Long HU ; Jian CHEN
Chinese Journal of Analytical Chemistry 2024;52(7):910-924
Surface-enhanced Raman scattering(SERS)can detect molecules adsorbed on the surface of noble metals in monolayers and sub-monolayers,and provide structural information of molecules with high sensitivity,high accuracy,and fingerprint recognition and non-destructive detection.The SERS technology has been widely used in single-molecule detection,chemical reaction and engineering,biomedicine,nanomaterials and environmental detection,and so on.The spectral sensitivity and signal reproducibility of SERS are closely related to the type of noble metal substrate.In this paper,based on the mechanism of electromagnetic field enhancement(EM)and chemical enhancement(CM)of SERS,the affecting factors of SERS enhancement were analyzed,including the micro-nanostructure of SERS substrate,particle size,particle spacing,etc,the research and application of SERS substrate in recent years were summarized and reviewed,and the development direction of metal substrate,data analysis and application direction of SERS technology in the future were prospected.
8.Clinical Features and Prognosis of Acute T-cell Lymphoblastic Leukemia in Children——Multi-Center Data Analysis in Fujian
Chun-Ping WU ; Yong-Zhi ZHENG ; Jian LI ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Xue-Ling HUA ; Hao ZHENG ; Zai-Sheng CHEN ; Shao-Hua LE
Journal of Experimental Hematology 2024;32(1):6-13
Objective:To evaluate the efficacy of acute T-cell lymphoblastic leukemia(T-ALL)in children and explore the prognostic risk factors.Methods:The clinical data of 127 newly diagnosed children with T-ALL admitted to five hospitals in Fujian province from April 2011 to December 2020 were retrospectively analyzed,and compared with children with newly diagnosed acute precursor B-cell lymphoblastic leukemia(B-ALL)in the same period.Kaplan-Meier analysis was used to evaluate the overall survival(OS)and event-free survival(EFS),and COX proportional hazard regression model was used to evaluate the prognostic factors.Among 116 children with T-ALL who received standard treatment,78 cases received the Chinese Childhood Leukemia Collaborative Group(CCLG)-ALL 2008 protocol(CCLG-ALL 2008 group),and 38 cases received the China Childhood Cancer Collaborative Group(CCCG)-ALL 2015 protocol(CCCG-ALL 2015 group).The efficacy and serious adverse event(SAE)incidence of the two groups were compared.Results:Proportion of male,age ≥ 10 years old,white blood cell count(WBC)≥ 50 × 109/L,central nervous system leukemia,minimal residual disease(MRD)≥ 1%during induction therapy,and MRD ≥ 0.01%at the end of induction in T-ALL children were significantly higher than those in B-ALL children(P<0.05).The expected 10-year EFS and OS of T-ALL were 59.7%and 66.0%,respectively,which were significantly lower than those of B-ALL(P<0.001).COX analysis showed that WBC ≥ 100 x 109/L at initial diagnosis and failure to achieve complete remission(CR)after induction were independent risk factors for poor prognosis.Compared with CCLG-ALL 2008 group,CCCG-ALL 2015 group had lower incidence of infection-related SAE(15.8%vs 34.6%,P=0.042),but higher EFS and OS(73.9%vs 57.2%,PEFS=0.090;86.5%vs 62.3%,PoS=0.023).Conclusions:The prognosis of children with T-ALL is worse than children with B-ALL.WBC ≥ 100 × 109/L at initial diagnosis and non-CR after induction(especially mediastinal mass has not disappeared)are the risk factors for poor prognosis.CCCG-ALL 2015 regimen may reduce infection-related SAE and improve efficacy.
9.The Factors Related to Treatment Failure in Children with Acute Lymphoblastic leukemia——Analysis of Multi-Center Data from Real World in Fujian Province
Chun-Xia CAI ; Yong-Zhi ZHENG ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Shao-Hua LE ; Hao ZHENG
Journal of Experimental Hematology 2024;32(6):1656-1664
Objective:To analyze the related factors of treatment failure in children with acute lymphoblastic leukemia (ALL)in real-world.Methods:The clinical data of 1414 newly diagnosed children with ALL admitted to five hospital in Fujian province from April 2011 to December 2020 were retrospectively analyzed.Treatment failure was defined as relapse,non-relapse death,and secondary tumor.Results:Following-up for median time 49.7 (0.1-136. 9)months,there were 269 cases (19.0%)treatment failure,including 140 cases (52.0%)relapse,and 129 cases (48.0%)non-relapse death.Cox univariate and multivariate analysis showed that white WBC≥50 ×109/L at newly diagnosis,acute T-cell lymphoblastic leukemia (T-ALL),BCR-ABL1,KMT2A-rearrangement and poor early treatment response were independent risk factor for treatment failure (all HR>1.000,P<0.05).The 5-year OS of 140 relapsed ALL patients was only 23.8%,with a significantly worse prognosis for very early relapse (relapse time within 18 months of diagnosis).Among 129 patients died from non-relapse death,71 cases (26.4%)were died from treatment-related complications,56 cases (20.8%)died from treatment abandonment,and 2 cases (0.7%)died from disease progression.Among them,treatment-related death were significantly correlated with chemotherapy intensity,while treatment abandonment were mainly related to economic factors.Conclusion:The treatment failure of children with ALL in our province is still relatively high,with relapse being the main cause of treatment failure,while treatment related death and treatment abandonment caused by economic factors are the main causes of non-relapse related death.
10.Efficacy of adjusted NI value guidance combined with small-dose esketamine for program-controlled closed-loop target-controlled infusion system
Shengchao LI ; Xiaoshan LI ; Huan HE ; Weidong SHAO ; Chanyan XU ; Xing′an ZHANG ; Bo XU
Chinese Journal of Anesthesiology 2024;44(4):428-432
Objective:To evaluate the efficacy of adjusted Narcotrend Index (NI) value guidancecombined with small-dose esketamine for program-controlled closed-loop target-controlled infusion (TCI) system.Methods:Forty-eight American Society of Anesthesiologists Physical Status classificationⅠ or Ⅱpatients, regardless of gender, aged 18-55 yr, with body mass index of 18-25 kg/m 2, scheduled for elective laparoscopic surgery under general anesthesia, were assigned to control group (group C, NI baseline value median 36) and esketamine group(group E, NI baseline value median 46) using a random number table method, with 24 cases in each group. Anesthesia induction and maintenance were carried out using effect-site concentration TCI(Schnider model for propofol infusion and Minto model for remifentanil infusion). After the NI value was maintained at 26-46 during anesthesia maintenance, a small dose of esketamine was given (as an intravenous bolus 0.2 mg/kg, followed by an infusion of 5 μg·kg -1·min -1for 30 min) in group E, and the equal volume of normal saline was given instead in group C. Program-controlled closed-loop TCI was then started, and the target effect-site concentrations of propofol and remifentanil were adjusted every 5 min according to the corresponding preset NI baseline value. The main outcome measures were the percentage of time of NI value maintained in the target range within 1 h after administration of esketamine. Secondary outcome measures were the consumption of propofol and remifentanil, postoperative recovery time, incidence of nausea and vomiting, pain and shivering within 1 h after surgery. Patients were followed for intraoperative awareness on 2nd day after operation. Results:The performance of the program-controlled closed-loop TCI systems was within the safe clinical threshold, with no intraoperative awareness occurred in both groups. The consumption of propofol and remifentanil was significantly reduced in group E as compared to group C( P<0.05). There were no statistically significant differences in the percentage of time of NI value maintained in the target range, postoperative recovery time and incidence of adverse reactions between the two groups ( P>0.05). Conclusions:Adjusted NI value guidance combined with small-dose esketamine provides better efficacy when used for program-controlled closed-loop TCI system.

Result Analysis
Print
Save
E-mail