1.The neural function analysis based on PET/CT localization of the MRI negative epilepsy The neural function analysis based on PET/CT localization of the MRI negative epilepsy
Yunbo LI ; Youmin GUO ; Xing'an LIU ; Miao WANG
Journal of Practical Radiology 2016;32(7):1001-1004
Objective To explore the neural function analysis based on PET/CT imaging for the MRI negative localization in patients with refractory epilepsy.Methods 85 cases of drug refractory epilepsy patients (male 47,female 38,M/F:1.2 ︰ 1;age range from 6-35 years old),receiving head PET/CT conventional imaging in the interphase,compared to the normal PET cerebral metabolic databases.Surgery was carried out on the patients who with unilateral lobe of the brain,the efficacy was evaluated according to the Eagle standard.Results Epilepsy in unilateral was 63.5%(54/85 ),bilateral was 28.2%(24/85 )and unclear was 8.3%(7/85 ).6 months,12 months,18 months and 24 months later after surgery in patients who with unilateral lobe,the efficacy reaching the Eagle class Ⅰ and class Ⅱ standards was 61.1% (33/54),61.1% (33/54),61.1% (33/54),59.1% (29/49 ),respectively.Conclusion PET/CT neural function analysis could find epileptogenic zone which was negative in MRI imaging in patients with refractory epilepsy, is one of the important methods of preoperative localization.
2.Observation and evaluation of the application effect of a dynamic scoring method in the emergency department of primary hospital.
Zhongyuan ZHOU ; Shijun MO ; Zengxue LU ; Shengnan LIU ; Yongjun PENG
Chinese Critical Care Medicine 2023;35(5):533-537
OBJECTIVE:
To establish a new emergency dynamic score (EDS) method based on modified early warning score (MEWS) combined with clinical symptoms, rapidly available examination results and bedside examination data in the emergency department, and to observe its applicability and feasibility in the clinical application of emergency department.
METHODS:
A total of 500 patients admitted to the department of emergency of Xing'an County People's Hospital from July 2021 to April 2022 were selected as research objects. After admission, EDS and MEWS scores were performed first, and then acute physiology and chronic health evaluation II (APACHE II) was performed retrospectively, and the prognosis of patients was followed up. The difference of short-term mortality in patients with different score segments of EDS, MEWS and APACHE II were compared. Receiver operator characteristic curve (ROC curve) was drawn to evaluate the prognostic value of various scoring methods in critically ill patients.
RESULTS:
The mortality of patients in different score groups of each scoring method increased with the increase of the score value [The mortality of 0-1, 2-3, 4-5, 6-7 and ≥ 8 of MEWS were 1.9% (3/159), 2.9% (6/208), 12.4% (11/89), 29.0% (9/31) and 61.5% (8/13), respectively. The mortality of EDS stage 1 weighted MEWS score 0-3, 4-6, 7-9, 10-12 and ≥ 13 were 0 (0/49), 3.2% (8/247), 6.6% (10/152), 31.9% (15/47) and 80.0% (4/5), respectively. The mortality of EDS stage 2 clinical symptom score 0-4, 5-9, 10-14, 15-19, ≥ 20 were 0 (0/13), 0.4% (1/235), 3.6% (6/165), 26.2% (17/65), 59.1% (13/22), respectively. The mortality of EDS stage 3 rapid test data score 0-6, 7-12, 13-18, 19-24 and ≥ 25 were 0 (0/16), 0.6% (1/159), 4.6% (6/131), 13.7% (7/51) and 65.0% (13/20), respectively. The mortality of patients with APACHE II score 0-6, 7-12, 13-18, 19-24 and ≥ 25 were 1.9% (1/53), 0.4% (1/277), 4.6% (5/108), 34.2% (13/38) and 70.8% (17/24), respectively, all P < 0.01]. When the MEWS score was more than 4, the specificity was 87.0%, the sensitivity was 67.6%, and the maximum Youden index was 0.546, which was the best cut-off point. When the weighted MEWS score of EDS in the first stage was greater than 7, the specificity of predicting the prognosis of patients was 76.2%, the sensitivity was 70.3%, and the maximum Youden index was 0.465, which was the best cut-off point. When clinical symptom score of EDS in the second stage was more than 14, the specificity and sensitivity of predicting the prognosis of patients were 87.7% and 81.1%, respectively, and the maximum Youden index was 0.688, which was the best cut-off point. When the third stage rapid test of EDS reached 15 points, the specificity of predicting the prognosis of patients was 70.9%, and the sensitivity was 96.3%, and the maximum Youden index was 0.672, which was the best cut-off point. When APACHE II score was higher than 16, the specificity was 87.9%, the sensitivity was 86.5%, and the maximum Youden index was 0.743, which was the best cut-off point. ROC curve analysis showed that: EDS score in the stage 1, 2 and 3, MEWS score and APACHE II score can predict the short-term mortality risk of critically ill patients. The area under the ROC curve (AUC) and 95% confidence interval (95%CI) were 0.815 (0.726-0.905), 0.913 (0.867-0.959), 0.911 (0.860-0.962), 0.844 (0.755-0.933) and 0.910 (0.833-0.987), all P < 0.01. In terms of the differential ability to predict the risk of death in the short-term, the AUC in the second and third stages of EDS were highly close to APACHE II score (0.913, 0.911 vs. 0.910), and significantly higher than MEWS score (0.913, 0.911 vs. 0.844, both P < 0.05).
CONCLUSIONS
EDS method can dynamically evaluate emergency patients in stages, and has the characteristics of fast, simple, easy to obtain test and inspection data, which can facilitate emergency doctors to evaluate emergency patients objectively and quickly. It has strong ability to predict the prognosis of emergency patients, and is worth popularizing in emergency departments of primary hospitals.
Humans
;
Research Design
;
Critical Illness
;
Retrospective Studies
;
Hospitals
;
Emergency Service, Hospital