1.The application of a 2D diode array in verifying the composite dose distribution of intensity modulated radiation therapy
Qilin LI ; Xiaowu DENG ; Lixin CHEN ; Xiaoyan HUANG ; Shaomin HUANG
Chinese Journal of Radiological Medicine and Protection 2011;31(3):359-362
Objective In order to explore the ways of reflecting the dose distribution in the implementation of the of IMRT (intensity modulated radiation therapy),a 2D diode array (2D-DA) was used in verifying the composite dose distribution of IMRT plans in the way of multi-gantry-angle composite (MGAC).Methods IMRT quality assure (QA) plans of 27 patients,based on the 2D-DA and solid water phantom,were designed and verified in two ways of single-gantry-angle composite (SGAC) and MGAC verifications.The comparison and analyzation of the dose distributions of the TPS calculation and the measurement of the 2D-DA were done.Results (1) When the beam central axes were not superposed with the detectors'plane of the 2D-DA,the verification passrate of SGAC and MGAC planar dose distribution of 27 patients'IMRT plan were 94.56%±4.28% and 94.81%±3.80% (the criteria:rvalue,3 ram/3%),respectively.There was no statistical difference between the results of two sets (t =-0.213,P>0.05).(2) When one of the beam central axes was superposed with the detectors'plane of the 2D-DA,the verification passrate of MGAC planar dose distribution were 79.72%±12.77%.Conclusions Using the 2D-DA with a proper phantom,there was no statistical difference in the SGAC and MGAC verifications of IMRT plans when the beam central axes were not superposed with the detectors'plane.However,the MGAC dose distribution can provide more about the clinical dosimetry,and the errors in the implementation of the of IMRT were easier located.
2.Comparison of planning parameter selection for volumetric modulated arc therapy of nasopharyngeal carcinoma in two different treatment planning systems
Yan MA ; Jian ZHENG ; Xiaowu DENG ; Shaomin HUANG ; Li CHEN
Chinese Journal of Radiation Oncology 2015;(5):564-568
Objective To investigate the impact of planning parameter settings on plan quality and delivery efficiency of VMAT for nasopharyngeal carcinoma with two treatment planning systems (TPS),as references for clinic plan optimization. Methods 25 patients with nasopharyngeal carcinoma were selected and planned for SIB?VMAT treatment. The same planning aims were used in the two kinds of TPS ( TPS?1 and TPS?2). Multiple planning parameters were set for plan optimization. Dose distribution to the target volumes and organs at risk,monitor unit ( MU) and delivery time were compared. Paired t?test or one?way ANOVA was used for the data which was in accordance to normal distribution;otherwise, nonparametric Wilcoxon signed rank test or nonparametric Friedman test was used. Results More segments lead to better plan quality and less MU but longer delivery time ( Minor impact was observed when segment number was larger than 120) in TPS?1,while it had little impact on both plan quality and delivery efficiency in TPS?2. Comparing to single?arc plans,dual?arc VMAT achieved no significant benefit in plan quality but had more MU and longer delivery time in TPS?1 ( P= 0?000 ) . However, dual?arc VMAT plans had better dose distribution in TPS?2, decreased the maximum and mean dose for spinal cord in 3?9% and 13?7%respectively (P=0?000,0?000).Changing the settings of maximum or minimum dose rate did not affect the plan quality in both of the tested TPSs. Increasing the maximum or minimum dose rate reduced the delivery time but the latter increased the number of MU ( P=0?000,0?000) . Conclusions VMAT plan quality and delivery efficiency is affected significantly and differently by planning parameter settings for two TPSs. Trial test should be conducted for different TPS to determine the optimal parameter settings.
3.The feasibility study of independent check for intensity-modulated radiotherapy
Wufei CAO ; Lixin CHEN ; Li CHEN ; Xiaowu DENG
Chinese Journal of Radiation Oncology 2011;20(6):521-524
Objective To investigate of the accuracy and feasibility of independent check for intensity-modulated radiotherapy (IMRT).Methods Inputing the linear accelerator Varian 600C/D physical data to IMsure ( a independent checking software) and constructing a calculation model.Use of IMsure to calculate the point dose and fluence of 25 cases IMRT treatment plans which have been calculated by Eclipse treatment planning system (TPS),and do a actual measurement of these plans by Matrixx at the same time.IMsure,TPS calculation results and measurement results of Matrixx were compared.Results Select Matrixx's center probe as a reference point,to TPS calculated results as the standard,then the average difference of the IMsure calculation and Matrixx measurement were ( -0.13 + 1.24)% (t =0.20,P =0.840 ) and ( - 0.18 ± 1.45 ) % ( t =0.86,P =0.400 ),respectively.Compared IMsure with 3 mm/3 %and 2 mm/2% standard respectively,the average γ rate of TPS were (98.7 ±2.8)% and (94.9 ±7.2)% ;compared matrixx measurement results,the average γ rate of TPS were ( 99.0 + 2.0 ) % and ( 93.2 ±6.9) %.The results show that the difference of the point dose and the γ rate of dose distribution by Matrixx measurement and IMsure calculation was no statistically significant difference ( t =1.54,P =0.126 ).Conclusions Independent checking software can be used in the treatment planning system to acceptance and initial clinical tests.In routine,a independent checking software as IMsure may do a pre-verificaton of IMRT treatment plan,or even partially replace of the actual measurement if the adequate conventional quality assurance do well,thus reducing the daily measurements.
4.The study of mechanical movement displacement for three amorphous silicon electronic portal imaging devices
Guanghua JIN ; Junhan ZHU ; Hailei LIN ; Xiaowu DENG ; Lixin CHEN
Chinese Journal of Radiation Oncology 2013;(1):76-79
Objective To study corrective method for displacement in the procedure of electronic portal imaging device (EPID)-based intensity-modulated radiotherapy dose valuation by studying the relative mechanical displacement of different vendor EPID (aS1000,Varian; aS500,Varian; iViewGT,Elekta).Methods A 5 cm × 5 cm field was set up to acquire portal images for three kinds of EPID,then a in house software was used to analysis the portal images.The relative displacement was acquired via analyzing a series of comparation between center positions of gantry angle ranging from 0° to 360° and gantry angle at 0°.Results In the lateral direction,the maximum relative displacement of EPID with aS1000,S500 and iViewGT were (-0.23 ±0.17) mm,(2.94±0.17) mm and (0.35 ±0.09) mm,respectively.In the longitude direction,the displacements were (-4.16 ± 0.20) mm,(-4.15 ± 0.25) mm and (-1.66 ±0.11) mm,respectively.As to longitude direction,the displacements could be well fitted with the usage of quadruplicate empiric function.Conclusions There is a significant difference at the aspect of relative displacement between different vendors EPID at different gantry angles.And the displacement in the longitude direction is obviously larger than in the lateral direction.The relative displacement should be corrected when applying EPID to the intensity-modulated radiotherapy dose verification at different gantry angles.
5.Initial clinic verification of internal target volume generated with four-dimensional CT and deformable registration
Jun YANG ; Xingwang GAO ; Xiaowu DENG ; Ming CHEN ; Fugen ZHOU
Chinese Journal of Radiation Oncology 2013;(1):80-83
Objective To study preliminary the accuracy of clinical target volume (CTV) and internal target volume (ITV) automatically generated by an in-house deformable registration software on fourdimensional CT (4DCT),and evaluate its feasibility of clinical application.Methods Clinic treated one lung cancer patient and one liver cancer patient were selected for the study.CTV was delineated by radiation oncologist according to a single respiratory phase image of 4DCT scanning,and then deformed to the other phases and generated the CTVdefm on each phase image.Differences between the CTVdefm and CTVmanu were then compared.A composite ITVcopm was created by overlapping all the CTVdefm of 10 phases and compared with the ITVMIP which was contoured on the maximum intensity projection (MIP) CT images,including the shape,volume and geometric center position of the ITV contour.Results For the tested lung case,average volume difference between the CTVdefm and CTV was (-2.59 ± 5.02)% for the all 10 phases,and the vector departure of the two ITV centers was (1.04 ± 0.89) mm.The ITVcomp almost completely matched the ITVMIP on the tested liver case with a volume difference smaller the 1% and only 1.4 mm vector departure between their geometric centers.Conclusion The validity of the CTVdefm and ITVcomp gained from automatic deformation of manual delineation reference based on 4DCT images were preliminary evaluated and proved to be good enough for clinic planning.
6.A comparative study of 11C-MET PET with MRI for target volume delineation in postoperative radiotherapy for brain high grade glioma
Meiling DENG ; Shaoxiong WU ; Shaomin HUANG ; Lie ZHENG ; Wei FAN ; Xiaowu DENG ; Zhongping CHEN
Chinese Journal of Radiation Oncology 2010;19(5):415-419
Objective To evaluate the value of L-(methyl-11C)-labeled methionine positron emissions tomography (MET PET) and MRI in target volume delineation for postoperative radiotherapy for brain high grade glioma (HGG).Methods Thirty-seven patients with supratentorial HGG were included.Both MRI and MET PET scan were performed in the same treatment position for all patients.The consistency to determine residual tumor between MRI and MET PET was analyzed.Imaging data of MET PET and MRI were coregistered using the BrainLAB image fusion software.The extension of the volume with high uptake (VMET) on MET PET were compared quantitately with the enhancing area on MRI T1W gadolinium enhancement (VGd) and the hyperintensity area on MRI T2W (VT2).Results Both MET PET and MRI were positive for 19 patients and negative for 7 patients.The consistency between these two scans was 70.3%.MET PET was integrated with MRI in 30 patients with positive MET uptake.VMET were partially or entirely outside VGd in 29 patients and VT2 in 17 patients, whereas VGd and VT2 were partially or entirely outside VMET in all patients.The maximal distance from the margin of VMET to VGd was ≥ 2.0 cm in 50%patients and the corresponding distance of VMET to VT2 was ≥ 1.0 cm in 33% patients.Conclusions The differences are existing between MET PET and MRI in determination and identification of the location and extension of residual tumor for patients with HGG.The integration of MET PET and MRI can accurately delineate radiation target volume.
7.Application of 2-D Ionization Chamber Array For Validation of Electron Arc Therapy Plan
Hongqiang SUN ; Lixin CHEN ; Xiaowu DENG ; Wenzhao SUN ; Shaomin HUANG ; Li CHEN
Chinese Journal of Medical Physics 2010;27(1):1594-1598,1620
Objective:To inspect the dosimetry characteristic of a 2-D ionization chamber array and its response to oblique incident electron beam.And to discuss feasibility to using it to validate the electron arc therapy plan.Materials and methods:(1)The 2-D ionization chamber array was calibrated referring to a themble chamber,comparing the response to electron beams with incidence angle ranged from-50°to 50°.(2)Phantom test plans of 6 and 10MeV electron beam arc therapy were designed,with the beam rotation arcs of 30°,60°and 90° respectively,symmetric to the Central axis of 0°gantry angle.Dose distribution of each plan was verifled with the 2-D array.Results:(1)Measurement differences between the central detector of the array and the thimble chamber were less than 2%,under the planned oblique inddent 6/10MeV electron beam.(2)For the all test plans,dose error was less than 3%at dmax in the symmetric axis of the electron beam arcs.Off-axis dose error was less than 2%within the central 70%area of the profile in non-rotating direction,and smaller than 1.5%in the rotational direction.The measured dose distribution had good agreement with the TPS calculation in isodose curves between 100%and 20%.The gammapass rates(△D=5%,△d=5cm)were 99.98%、99.89%、99.74%、98.64%、99.16%and 99.44%respectively for 6 and 10 MeV plans with electron beam arcs of 30°,60°and 90°.Conclusion:it is practicable using the tested 2-D ionization chamber array to verify and validate the electron beam arc therapy plan.
8.Impacts of registration parameters on accuracy of cone-beam computed tomography image-guided head and neck radiotherapy
Botian HUANG ; Dandan ZHANG ; Yinglin PENG ; Guangwen LUO ; Ke YUAN ; Xiaowu DENG
Chinese Journal of Radiation Oncology 2016;25(4):391-394
Objective To evaluate the impacts of slice thickness and registration frame range on the accuracy of cone-beam computed tomography ( CBCT) image-guided head and neck ( HN) radiotherapy, and to provide a basis for positioning correction in image-guided radiotherapy.Methods A planned CT scan was performed for an anthropomorphic HN phantom with slice thickness of 1 mm and 3 mm and simulated positioning errors in x, y, and z directions on the accelerator.CBCT scan and reconstruction were performed with slice thickness of 1 mm and 3 mm.Two different registration frame ranges were used ( range 1:from C7 to superior orbit;range 2:from C7 to calvaria ) .Automatic bony registration was performed for CBCT and planned CT images with slice thickness of 1 mm and 3 mm.The registration accuracy was evaluated.Results For range 1, the registration errors in x, y, and z directions with a slice thickness of 1 mm were significantly lower than those with a slice thickness of 3 mm (0.5±0.2 mm vs.-0.7±0.2 mm, P=0.00;0.5±0.3 mm vs. 1.0±0.3 mm, P=0.00;-0.1±0.5 mm vs.1.5±0.5 mm, P=0.00).For range 2, the registration errors in x, y, and z directions with a slice thickness of 3 mm were-0.4±0.2 mm, 0.5±0.2 mm, and 0.7±0.4 mm, respectively.Conclusions Engagement of calvaria in registration range can substantially enhance the registration accuracy in CBCT or CT images for HN.The registration error with slice thickness of 1 mm can be controlled within 1 mm.
9.Development and clinical application of integrated network management platform for tumor radiotherapy information
Xingwang GAO ; Guangshun ZHANG ; Li CHEN ; Luosheng ZHANG ; Shaomin HUANG ; Xiaowu DENG
Chinese Journal of Radiation Oncology 2016;25(4):395-400
Objective To develop a network management system for tumor radiotherapy information that integrates process management and quality assurance functions, and to investigate its clinical value. Methods Based on the requirements of radiotherapy process quality assurance and control, the client-server ( C-S) pattern, along with SQL SERVER 2008 database structure, international standard DICOM 3.0, DICOM RT, and HL7 protocols, and system hardware and self-developed software in local area network, was adopted to establish the network management system for radiotherapy information, and clinical tests were performed to evaluate the operation performance of this platform.Results ( 1 ) The interactive integrated management platform and client-side functional modules with a uniform interface were developed.( 2) The safe and reliable standardized data interface was developed, which could be connected to accelerators, treatment planning systems, and hospital information systems developed by mainstream manufacturers.( 3) The modules for radiotherapy process management and quality assurance and management were designed and developed.( 4) The platform passed all the tests before operation and had been used in clinical departments for almost 3 years, which confirmed that the system was safe and stable during operation and that all functions designed were realized.Conclusions The integrated management platform meets the requirements for application and management of radiotherapy information and data, improves the overall work efficiency in radiotherapy department and the level of quality assurance and control, and holds promise for clinical application as a good tool for tumor radiotherapy departments.
10.An investigation of the basic situation of radiotherapy in mainland China in 2015
Jinyi LANG ; Pei WANG ; Dake WU ; Hailuo ZHONG ; Bing LU ; Xiaowu DENG ; Lyuhua WANG
Chinese Journal of Radiation Oncology 2016;25(6):541-545
Objective To conduct the 7th investigation by Chinese Society of Radiation Oncology,Chinese Medical Association,and to further investigate the current situation of radiotherapy in mainland China,reasonably allocate personnel and equipment resources,and promote the development of radiotherapy in China.Methods From October 8,2015 to December 2015,the office for investigation of radiotherapy information was established,the list and contact information of radiotherapy units were provided by each province,and a special data submission system was used for a complete,rapid,and efficient investigation through the Internet.Results As of January 20,2016,there were 1 413 radiotherapy units in the mainland China with 52,496 employees in total,among which there were 15 839 radiotherapy physicians (4824 with senior professional titles),8 452 technical therapists (260 with senior professional titles),3 292 physicists (562 with senior professional titles),and 938 maintenance engineers (120 with senior professional titles).In the aspect of radiotherapy equipment,there were 1930 linear accelerators,96 Co-60 teletherapy units,173 X-knife units,212 γ-knife units,382 Ir-192 brachytherapy units,436 Co-60 brachytherapy units,1 051 X-ray simulators,1 353 CT simulators,642 MRI simulators,978 sets of multileaf collimators,1922 sets of treatment planning systems,and 974 sets of radiotherapy network systems.As for quality control devices,there were 1 792 dosimeters,2 143 ionization chambers,935 two-dimensional array dosimeters,540 threedimensional dosimetric verification systems,596 three-dimensional water tanks,844 anthropomorphic phantoms,and 1 168 water equivalent phantoms.In the aspect of therapeutic situation,there were 102,170 beds (including beds in departments of oncology in general hospitals),76612 episodes per day,and 919339 episodes per year.Conclusions The results of this investigation show significant increases in radiotherapy units,personnel,and equipment in recent years in mainland China.The distribution of radiotherapy units and equipment and the structure of radiotherapy personnel are becoming more reasonable,but there are still some problems.In some regions,current radiotherapy equipment cannot meet the medical needs,and there is a lack of professional technical personnel.