1.Spatio-temporal clustering analysis of influenza in Jiaxing City
WANG Yuanhang ; FU Xiaofei ; QI Yunpeng ; LIU Yang ; ZHOU Wanling ; GUO Feifei
Journal of Preventive Medicine 2025;37(1):55-58
Objective:
To investigate the epidemiological and spatio-temporal characteristics of influenza in Jiaxing City, Zhejiang Province, so as to provide insights into perfecting the prevention and control strategies of influenza.
Methods:
Data of influenza in Jiaxing City from 2019 to 2023 were collected from the Chinese Disease Prevention and Control Information System. Population data of the same period were collected from the Zhejiang Health Information Network Reporting System. The epidemiological characteristics of influenza were analyzed using descriptive analysis. Vector map information was collected from the Open Street Map, and the spatio-temporal clustering characteristics of influenza were analyzed using spatial autocorrelation and spatio-temporal scanning.
Results:
A total of 181 501 cases of influenza were reported in Jiaxing City from 2019 to 2023, with an average annual reported incidence of 653.93/105. The majority of cases were aged 5 to <15 years (59 785 cases, 32.94%). The majority of the occupations were students (78 239 cases, 43.11%) and pre-school children (33 715 cases, 18.58%). The county (city, district) with the highest reported incidence was Haining City (1 451.70/105), and the town (street) with the highest reported incidence was Chang'an Town (1 932.78/105). Spatial autocorrelation analysis showed that the incidence of influenza in Jiaxing City from 2019 to 2023 had positive spatial correlations (all Moran's I>0, all P<0.05), with a high-high clustering in the southern region. Spatio-temporal scanning analysis showed that there was a spatio-temporal clustering of influenza in Jiaxing City from 2019 to 2023, with the southern region being the primary-type clustering area and the period between November and January of the following year being the clustering time.
Conclusion
There was a significant spatio-temporal clustering of influenza in Jiaxing City from 2019 to 2023, with winter being the peak season and the southern region being the primary area.
2.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
3.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
4.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
5.Effect of Gypenosides on MAFLD Mice and Its Molecular Mechanism Based on Classical/Non-classical Ferroptosis Pathways
Yu LIU ; Yupeng PEI ; Jiaxin WANG ; Jingxuan ZHU ; Xiaofei SUN ; Qun WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):99-107
ObjectiveTo explore the effect of gypenosides (GPs) on liver lipid deposition in metabolism-associated fatty liver disease (MAFLD) mice and its mechanism based on classical/non-classical ferroptosis. MethodsEight male C57BL/6 mice in a blank group and 32 male apolipoprotein E gene knockout (ApoE-/-) mice were randomly divided into a model group, a low-dose GPs (GPs-L) group, a high-dose GPs (GPs-H) group, and a simvastatin (SV) group. Starting from the second week, mice in the blank group were given a maintenance diet, and the other four groups were fed a high-fat diet daily. After eight weeks of feeding, mice in the GPs-L and GPs-H groups were given GPs of 1.487 mg·kg-1·d-1 and 2.973 mg·kg-1·d-1, respectively, and mice in the SV group were given simvastatin of 2.275 mg·kg-1·d-1. Mice in the blank group and the model group were given saline of equal volume by gavage for four weeks. The content of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum of mice in each group was detected by an automatic biochemical analyzer. The level of non-esterified fatty acid (NEFA) and TG in the mouse liver was measured by the kit. The change in liver tissue structure and lipid deposition was observed by hematoxylin-eosin (HE) and oil red O staining. The levels of coenzyme Q10 (CoQ10), glutathione (GSH), malondialdehyde (MDA), and Fe2+ in serum, as well as nicotinamide adenine dinucleotide phosphate [NAD(P)H] in the liver were detected by enzyme-linked immunosorbent assay (ELISA). The expression of ferroptosis suppressor protein 1 (FSP1) in the liver of mice was observed by the immunohistochemical (IHC) method, and the expression of genes and proteins related to classical and non-classical ferroptosis pathways was analyzed by real-time polymerase chain reaction (Real-time PCR) and Wes automated protein expression analysis system. ResultsCompared with those in the blank group, the levels of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver in the model group were significantly increased, and the level of HDL-C in serum was significantly decreased (P<0.01). The liver tissue structure changed, and there were fat vacuoles of different sizes and a large number of red lipid droplets, with obvious lipid deposition. The level of CoQ10 and GSH in serum and NADH in the liver were significantly decreased, while the level of MDA and Fe2+ in serum was significantly increased (P<0.01). The mRNA and protein expressions of cystine/glutamate transporter (xCT/SLC7A11), glutathione peroxidase (GPX4), p62, nuclear factor E2-related factor 2 (Nrf2), and FSP1 were significantly decreased, and the mRNA and protein expressions of tumor antigen (p53), spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonate 15-lipoxygenase (ALOX15), and Kelch-like epichlorohydrin-associated protein-1 (Keap1) were significantly increased (P<0.01). Compared with those in the model group, the level of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver of mice in the GPs-L, GPs-H, and SV groups were decreased, while the level of HDL-C in serum was significantly increased (P<0.05, P<0.01). The liver tissue structure and lipid deposition were improved. The levels of CoQ10 and GSH in serum and NADH in the liver were significantly increased, while the levels of MDA and Fe2+ in serum were significantly decreased (P<0.05, P<0.01). The mRNA and protein expressions of xCT, GPX4, p62, Nrf2, and FSP1 were significantly increased, while the mRNA and protein expressions of p53, SAT1, ALOX15, and Keap1 were significantly decreased (P<0.05, P<0.01). ConclusionGPs can interfere with liver lipid deposition in MAFLD mice through classical/non-classical ferroptosis pathways.
6.Effect of Gypenosides on MAFLD Mice and Its Molecular Mechanism Based on Classical/Non-classical Ferroptosis Pathways
Yu LIU ; Yupeng PEI ; Jiaxin WANG ; Jingxuan ZHU ; Xiaofei SUN ; Qun WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):99-107
ObjectiveTo explore the effect of gypenosides (GPs) on liver lipid deposition in metabolism-associated fatty liver disease (MAFLD) mice and its mechanism based on classical/non-classical ferroptosis. MethodsEight male C57BL/6 mice in a blank group and 32 male apolipoprotein E gene knockout (ApoE-/-) mice were randomly divided into a model group, a low-dose GPs (GPs-L) group, a high-dose GPs (GPs-H) group, and a simvastatin (SV) group. Starting from the second week, mice in the blank group were given a maintenance diet, and the other four groups were fed a high-fat diet daily. After eight weeks of feeding, mice in the GPs-L and GPs-H groups were given GPs of 1.487 mg·kg-1·d-1 and 2.973 mg·kg-1·d-1, respectively, and mice in the SV group were given simvastatin of 2.275 mg·kg-1·d-1. Mice in the blank group and the model group were given saline of equal volume by gavage for four weeks. The content of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum of mice in each group was detected by an automatic biochemical analyzer. The level of non-esterified fatty acid (NEFA) and TG in the mouse liver was measured by the kit. The change in liver tissue structure and lipid deposition was observed by hematoxylin-eosin (HE) and oil red O staining. The levels of coenzyme Q10 (CoQ10), glutathione (GSH), malondialdehyde (MDA), and Fe2+ in serum, as well as nicotinamide adenine dinucleotide phosphate [NAD(P)H] in the liver were detected by enzyme-linked immunosorbent assay (ELISA). The expression of ferroptosis suppressor protein 1 (FSP1) in the liver of mice was observed by the immunohistochemical (IHC) method, and the expression of genes and proteins related to classical and non-classical ferroptosis pathways was analyzed by real-time polymerase chain reaction (Real-time PCR) and Wes automated protein expression analysis system. ResultsCompared with those in the blank group, the levels of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver in the model group were significantly increased, and the level of HDL-C in serum was significantly decreased (P<0.01). The liver tissue structure changed, and there were fat vacuoles of different sizes and a large number of red lipid droplets, with obvious lipid deposition. The level of CoQ10 and GSH in serum and NADH in the liver were significantly decreased, while the level of MDA and Fe2+ in serum was significantly increased (P<0.01). The mRNA and protein expressions of cystine/glutamate transporter (xCT/SLC7A11), glutathione peroxidase (GPX4), p62, nuclear factor E2-related factor 2 (Nrf2), and FSP1 were significantly decreased, and the mRNA and protein expressions of tumor antigen (p53), spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonate 15-lipoxygenase (ALOX15), and Kelch-like epichlorohydrin-associated protein-1 (Keap1) were significantly increased (P<0.01). Compared with those in the model group, the level of TC, TG, LDL-C, ALT, and AST in serum and TG and NEFA in the liver of mice in the GPs-L, GPs-H, and SV groups were decreased, while the level of HDL-C in serum was significantly increased (P<0.05, P<0.01). The liver tissue structure and lipid deposition were improved. The levels of CoQ10 and GSH in serum and NADH in the liver were significantly increased, while the levels of MDA and Fe2+ in serum were significantly decreased (P<0.05, P<0.01). The mRNA and protein expressions of xCT, GPX4, p62, Nrf2, and FSP1 were significantly increased, while the mRNA and protein expressions of p53, SAT1, ALOX15, and Keap1 were significantly decreased (P<0.05, P<0.01). ConclusionGPs can interfere with liver lipid deposition in MAFLD mice through classical/non-classical ferroptosis pathways.
7.Meta analysis of the relationship between maternal adverse childhood experiences and offspring maladaptive social behaviors
XIAO Lü ; man*, NIE Xiaofei, KE Li, JIANG Shiying, LIU Bing
Chinese Journal of School Health 2025;46(10):1381-1386
Objective:
To systematically evaluate the association between maternal adverse childhood experiences (ACEs) and offspring social behavior, so as to provide a theoretical basis for further research on intergenerational social behavioral development.
Methods:
Relevant research literature about maternal ACEs and the development of children s maladaptive social behaviors were collected, from China National Knowledge Infrastructure (CNKI), VIP, Wanfang, SinoMed, PubMed, Web of Science, Cochrane Library, Embase and SpringLink databases, covering the period from the inception of each database to May 2025. The Chinese database matched and searched through three groups of keywords: "Pregnant women" "Mothers" and "Women"; "Bad childhood experience" "Bad early experience" and "Bad adolescent experience"; "Children" "Teenagers" "Children s behavior" "Children s development" "Teenagers behavior" "Internalized behavior" and "Externalized behavior". The English database was searched by three groups of keywords: "Female" "Pregnant women" "Mothers"; "Adverse childhood experiences" "Adverse early childhood experiences" "Adverse experiences of adolescent"; "Child behavior" "Child development" "Adolescent behavior" "Internalized behaviors" "Externalized behaviors". The selected literature was evaluated for quality and data extraction, with OR and 95% CI as effect indicators. Stata 16.0 software was used for heterogeneity testing, subgroup analysis, and publication bias analysis.
Results:
A total of 14 studies involving 64 302 mother-child pairs were included. The Meta analysis results showed a significant correlation between maternal ACEs and both offspring maladaptive internalized behaviors ( OR=1.75, 95%CI=1.42-2.15, P <0.01) and externalized behaviors ( OR=1.82, 95%CI=1.51-2.20, P <0.01). The results of subgroup analyses showed that in different regions[internalized behaviors:domestic, foreign OR (95% CI )=2.03(1.49-2.76), 1.55(1.19-2.03); externalized behaviors: domestic, foreign OR (95% CI )=2.41(1.52-3.82), 1.65(1.36-2.01)], study type[internalized behaviors: cohort study, cross sectional study OR (95% CI )=1.64(1.34-2.00), 1.85(1.30-2.65); externalized behaviors: cohort study, cross sectional study OR (95% CI )=1.76(1.46-2.12), 2.12(1.40-3.20)], sample size [internalized behaviors: ≥4 000, <4 000 pairs OR (95% CI )=1.69(1.13-2.55), 1.77( 1.41 -2.24); externalized behaviors: ≥3 000, <3 000 pairs OR (95% CI )=1.72(1.37-2.17), 2.13(1.44-3.15)], there were significant and positive association between mothers ACEs and children s internalizing and externalizing behaviors (all P <0.05).
Conclusion
A substantial positive association exists between maternal ACEs and the development of offspring maladaptive internalized and externalized behaviors, but the result needs to be continued to be validated by more research.
8.Discussion on Influencing Factors of Validation of Cleaning Process in Manufacture of Implantable Medical Devices.
Chinese Journal of Medical Instrumentation 2025;49(5):572-578
Cleaning process validation is an important guarantee for implantable medical devices to ensure product cleanliness. In the manufacturing process, implantable devices usually need to control pollution through cleaning process to achieve a certain cleanliness to ensure the effectiveness of sterilization and product safety. This paper discusses the cleaning process validation of the manufacturing process of the implantable devices based on relevant regulations and technical standards, and proposes the influencing factors and principles to be considered in the cleaning process validation, so as to provide technical reference for the design of the cleaning process validation.
Prostheses and Implants
;
Sterilization
;
Equipment and Supplies
9.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
10.A preclinical and first-in-human study of superstable homogeneous radiolipiodol for revolutionizing interventional diagnosis and treatment of hepatocellular carcinoma.
Hu CHEN ; Yongfu XIONG ; Minglei TENG ; Yesen LI ; Deliang ZHANG ; Yongjun REN ; Zheng LI ; Hui LIU ; Xiaofei WEN ; Zhenjie LI ; Yang ZHANG ; Syed Faheem ASKARI RIZVI ; Rongqiang ZHUANG ; Jinxiong HUANG ; Suping LI ; Jingsong MAO ; Hongwei CHENG ; Gang LIU
Acta Pharmaceutica Sinica B 2025;15(10):5022-5035
Transarterial radioembolization (TARE) is a widely utilized therapeutic approach for hepatocellular carcinoma (HCC), however, the clinical implementation is constrained by the stringent preparation conditions of radioembolization agents. Herein, we incorporated the superstable homogeneous iodinated formulation technology (SHIFT), simultaneously utilizing an enhanced solvent form in a carbon dioxide supercritical fluid environment, to encapsulate radionuclides (such as 131I,177Lu, or 18F) with lipiodol for the preparation of radiolipiodol. The resulting radiolipiodol exhibited exceptional stability and ultra-high labeling efficiency (≥99%) and displayed notable intratumoral radionuclide retention and in vivo stability more than 2 weeks following locoregional injection in subcutaneous tumors in mice and orthotopic liver tumors in rats and rabbits. Given these encouraging findings, 18F was authorized as a radiotracer in radiolipiodol for clinical trials in HCC patients, and showed a favorable tumor accumulation, with a tumor-to-liver uptake ratio of ≥50 and minimal radionuclide leakage, confirming the feasibility of SHIFT for TARE applications. In the context of transforming from preclinical to clinical screening, the preparation of radiolipiodol by SHIFT represents an innovative physical strategy for radionuclide encapsulation. Hence, this work offers a reliable and efficient approach for TARE in HCC, showing considerable promise for clinical application (ChiCTR2400087731).


Result Analysis
Print
Save
E-mail