1.Urinary interleukin-6 level was associated with urinary tract infection in patients with type 2 diabetes mellitus
Yun DENG ; Xiaobo FEN ; Rong PENG ; Weihong YU ; Lijun ZOU ; Lijuan YANG ; Wei CHENG ; Ruipin HE
Chinese Journal of Endocrinology and Metabolism 2011;27(3):213-214
The association of urinary cytokine concentration with the incidence of urinary tract infection in patients with diabetes mellitus was explored. Urinary interleakin-6 (IL-6) level in 156 female type 2 diabetes mellitus patients was tested and followed up for 6 months. The incidence of urinary tract infection between the top quartile of baseline urinary cytokine concentration with the bottom quartile was compared. The incidence of top quartile of urinary IL-6 concentration at baseline was significantly lower than that of bottom quartile ( 13.5% vs 37.8%, P<0.05 ). Abnormality of urinary IL-6 concentration may be involved in the mechanism leading to higher prevalence of urinary tract infection in patients with diabetes mellitus.
2.Research and development of remote training system for radiotherapy CT simulation based on virtual reality technology
Fen ZHENG ; Benhua XU ; Miaoyun HUANG ; Liuqing JIANG ; Fangfen DONG ; Lanyan GUO ; Jianmin YAO ; Yuangui CHEN ; Xiaobo LI
Chinese Journal of Radiation Oncology 2020;29(12):1070-1074
Objective:To develop a remote training system for CT simulation positioning of radiotherapy using virtual reality technology, and to explore a new method of medical training.Methods:The 3DMax and Maya were employed to establish the 3D model. The unity3D engine was adopted to develop 3D virtual operation and interaction system. Java spring MVC architecture was utilized as the system background service. MySQL was used as the background database system. The users were assigned into two roles: teacher and student, and the modes were divided into teaching and assessment modes.Results:The function of the system covered the whole process of CT simulation positioning, mainly including modules of patient information management, CT simulation positioning machine cognition, body position fixation technology, CT positioning scanning, and emergency handling, etc. Since it was put into use in 2018, the system has been running stably, with 14 920 pages views and an 86.66% pass rate. Compared with the traditional training, the training efficiency has been significantly improved and has received unanimous recognition.Conclusions:The remote training system can effectively improve the clinical practice ability and humanistic care ability of the trainees, which has good autonomy, sharing, and innovation. At present, the system has been put online and has strong popularization with prospects for broad application.
3.Development and application of the virtual simulation teaching experiment software of the bronchoscopy intelligent navigation-based fiducial marker implantation technology
Fenfang FU ; Jing CHEN ; Xianzhi DENG ; Minghui CHEN ; Nuoxi LI ; Fangfen DONG ; Fen ZHENG ; Jianmin YAO ; Benhua XU ; Xiaobo LI
Chinese Journal of Radiological Medicine and Protection 2023;43(5):343-350
Objective:To investigate the necessity and feasibility of the virtual simulation teaching experiment software of the bronchoscopy intelligent navigation-based fiducial marker implantation technology in the clinical application of radiotherapy.Methods:This study developed a 3D virtual operation and interactive system using the Unity3D engine, tools including 3Dmax and Maya, and the SQL database. The scenes in the system were produced using the currently popular next-generation production process. Targeting the priorities and difficulties in the implantation of fiducial markers, the system developed in this study allowed for simulated demonstration and training based on 12 steps and 10 knowledge points. Internal tests and remote evaluation tests were adopted in this system to obtain the test result of each subject. Then, the application value of the system was analyzed based on the test result.Results:As of May 1, 2022, the system had received 2 409 views and 425 test participants, with an test completion rate of 100% and an experiment pass rate of 96.5%. Moreover, this system won unanimous praise from 167 users, primarily including the students majoring in multilevel medical imaging technology and medical imaging science from the Fujian Medical University, as well as the radiotherapy-related staff of this university.Conclusions:The virtual simulation teaching experiment software of the bronchoscopy intelligent navigation-based fiducial marker implantation technology can be applied to the teaching of students and the training of related professionals.
4.The remote training system for quality assurance of medical electronic linear accelerators based on extended reality technology
Jing CHEN ; Xing WENG ; Liuqing JIANG ; Fangfen DONG ; Fen ZHENG ; Lanyan GUO ; Jianmin YAO ; Xiaobo LI
Chinese Journal of Radiation Oncology 2023;32(3):248-253
Objective:To improve the quality assurance (QA) skills of radiotherapy personnel and medical students and reduce the radiation risk of training by developing a remote training system for QA of medical electronic linear accelerators.Methods:This training system was built based on radiotherapy technology and quality control contents of medical electronic linear accelerators, and a virtual reality interactive software was developed using extended reality (XR) technology Unity 3D. A remote control module of multi-terminal platform was also developed. A multi-perspective evaluation system was adopted and a questionnaire was designed to analyze the application value of this system.Results:The training system reproduced the live environment and physical objects of medical electronic linear accelerator treatment room. It built a multi-terminal virtual simulation training system with radiotherapy technology as well as QA knowledge system. This system could provide 5G remote control of medical electronic linear accelerator for off-site quality control demonstration and guidance. By March 1, 2022, a total number of 133 people had been trained using this system, 76 valid questionnaires had been taken, of which 90.79% (69/76) of the respondents trusted the experimental results shown by the system and 88.16% (67/76) of the respondents considered the training system necessary.Conclusions:The training effect of this system is widely recognized. It fundamentally reduces the training radiation hazard and provides reference for the reform and progress of QA training mode of medical electronic linear accelerators.
5.A phantom study on the feasibility of recoverable fiducial marker implantation guided using the intelligent navigation bronchoscopy technology in Cyberknife Synchrony-based respiratory tracking
Jing CHEN ; Xianzhi DENG ; Fenfang FU ; Fen ZHENG ; Jianping ZHANG ; Shanting HE ; Benhua XU ; Yaqiang LIU ; Xiaobo LI
Chinese Journal of Radiological Medicine and Protection 2022;42(11):865-870
Objective:To explore the feasibility of recoverable fiducial marker implantation guided using the intelligent navigation bronchoscopy technology in the Cyberknife Synchrony-based respiratory tracking.Methods:CT scans of an inflatable pig lung after anti-rot processing were obtained. Then, eight simulated tumor lesion sites were designed in the left and right lung lobes using intelligent navigation software, with four classified as the sputum bronchial environment group and four classified as the wet bronchial environment group. Based on the implantation principle of Cyberknife fiducial markers, 32 recoverable fiducial markers were implanted around various simulated tumor lesions via bronchus under intelligent guidance. Then, the end-expiratory state of the pig lung was simulated, the pig lung was scanned again to obtain CT images of the implanted recoverable fiducial markers, and the number of successfully implanted fiducial markers was recorded. Eight deliverable Synchrony treatment protocols were designed using the Cyberknife planning system (Multiplan v4.6), and then the pig lung with simulated respiratory movements was exposed to radiation. After radiation, the implanted recoverable fiducial markers were retrieved using the bronchoscopy technique, and the number of successfully retrieved fiducial markers was recorded. Moreover, the translational errors, rotational errors, and rigid body errors were extracted from the Cyberknife log file and analyzed.Results:No recoverable fiducial markers slipped or fell during the experiment. Thirty-two recoverable fiducial markers were successfully implanted and recovered under the guidance of intelligent navigation bronchoscopy, with implantation and recovery success rates of both 100%. Moreover, the tracking rate and rigid body errors of the fiducial markers were 100% and less than 5 mm, respectively. The data from the Cyberknife log file indicated that there was no significant difference between the sputum bronchial environment group and the wet bronchial environment group in the translational errors in the left-right direction, the rotational errors in the roll direction, and the rotational errors in the pitch direction ( P>0.05). Compared to the wet bronchial environment group, the sputum bronchial environment group had slightly higher translational errors in front-back ( Z=-3.57, P<0.01) and cranio-caudal ( Z=-2.53, P<0.05) directions, lower rotational errors along the yaw axis ( Z = -3.88, P < 0.01), and lower rigid body error ( Z=-3.32, P<0.01), and the differences were all statistically significant. Conclusions:The recoverable fiducial marker implantation guided using the intelligent navigation bronchoscopy technology is feasible. Recoverable fiducial markers are stable in the bronchus of the phantom, and the Cyberknife tracking precision can meet clinical requirements. Therefore, the recoverable fiducial marker implantation guided using the intelligent navigation bronchoscopy technology has promising prospects in clinical and teaching applications.
6.Accuracy of the optically guided tracking system in radiotherapy
Zhanghua LIN ; Xianzhi DENG ; Fangfen DONG ; Jing CHEN ; Fen ZHENG ; Xing WENG ; Benhua XU ; Xiaobo LI
Chinese Journal of Radiological Medicine and Protection 2023;43(9):698-704
Objective:To explore the tracking accuracy of the surface optically guided tracking system (OGTS) in radiotherapy.Methods:Phantom verification and clinical trial verification were adopted. Specialized equipment was employed for the phantom verification. Specifically, the displacement of the optical markers as they moved from a predetermined position to the target position on the reflector ball platform was captured using the OGTS, and then the obtained displacement was compared with the fixed distance within the phantom to calculate the accuracy and repeatability of the OGTS. For the clinical trial verification, 45 patients treated with radiotherapy, which consisted of 15 cases with head, breast, and rectal tumors each, were selected to investigate the tracking accuracy and repeatability of the OGTS. For each patient, the values derived from the image-guided positioning system (IGPS) and the OGTS before and after image-guided setup error correction during three times of fractionated radiotherapy were randomly obtained. The translational errors of each error correction were also recorded. Before radiotherapy, patients′ setup errors were corrected and relevant data were obtained using the IGPS. The correction result of translation errors obtained using the IGPS served as a gold standard to verify the accuracy of the OGTS in monitoring the translational motion of patients. Finally, the comprehensive translational deviation of both method was calculated.Results:The phantom measurements showed that the comprehensive translational deviation for tracking accuracy and tracking repeatability of the OGTS had a maximum deviation and a standard deviation of 0.18 mm and 0.03 mm, respectively. The clinical trial result indicated that the tracking accuracy of IGPS and OGTS exhibited statistically significant differences only for the head in the z direction ( t = 2.21, P < 0.05). Conversely, no statistically significant differences were observed for the head in the remaining directions or for the breast and rectum in the three translational directions ( P > 0.05). The analysis showed that comprehensive translational deviations for the head, breast, and rectum derived from OGTS and IGPS were (0.91±0.62), (1.64±1.30), and (1.52±1.29) mm, respectively, satisfying the requirement that the deviations should be below 2 mm. Conclusions:The OGTS, featuring easy operation and high tracking accuracy, can assist the IGPS in real-time respiratory monitoring during radiotherapy.