1.The complications following treatment of calcaneal fracture with internal fixation with steel plate
Henghua FAN ; Boxun ZHANG ; Xiangdan LIANG
Medical Journal of Chinese People's Liberation Army 2001;0(09):-
Objective The complications of internal fication for calcaneal fracture were summarized and discussed to increase awareness of these complications, and to improve decision making and efficacy of the treatment. Methods The patients admitted to our hospital from October 1997 to June 2003 were followed up. The fracture in 68 feet (66 patients) was treated with open reduction and internal fixation (ORIF) using steel plate. The complications associated with ORIF were analyzed and discussed as to etiology, incidence, diagnosis, prevention and treatment. Results The patients were followed up for 7 to 57 months. Complications were found in 14 cases, including postoperative wound dehiscence in 5 (infection in 2), malunion (failure to achieve reduction) and arthritis in 9, accompanied by nerve injury in 6. The percentage of complication was 20 6%. With timely treatment, good function was regained in most of the patients. Conclusion Should attention be paid to the operation, many complications could be avoided. ORIF with plate is one ot the options for the treatment of this fracture, but the operative technic and the device should be improved. As the anatomy of the calcaneus is different from a long bone, it is unsuitable to apply the principle and device that are used in the internal fixation of a long bone to this fracture. The plate and screws used in the fixation of the calcaneal fracture can not give enough support
2.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
6.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.