1.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.Efficacy of direct-acting antiviral agents combined regimens for hepatitis C virus with different genotypes in Dehong Prefecture, Yunnan Province from 2022 to 2024
Renhai TANG ; Yidan ZHAO ; Yuecheng YANG ; Runhua YE ; Lifen XIANG ; Xingmei FENG ; Qunbo ZHOU ; Yanfen CAO ; Na HE ; Yingying DING ; Song DUAN
Shanghai Journal of Preventive Medicine 2025;37(8):676-681
ObjectiveTo investigate the therapeutic effects of direct-acting antiviral agents (DAAs) combined regimens for hepatitis C virus (HCV) patients in Dehong Prefecture, Yunnan Province from 2022 to 2024, to analyze the characteristics of treatment failure patients, so as to provide a basis for discovering more effective treatment regimens in the future. MethodsData on HCV prevention and treatment in Dehong Prefecture was extracted from the China Disease Control and Prevention Information System. A total of 617 patients with HCV antiviral therapy were included, and the differences in variable characteristics among patients with different genotypes were analyzed using comparative statistical tests, including basic socio-demographic characteristics, biochemical testing indicators, and information on previous treatment and current treatment. In addition, the cure rate of HCV patients with diverse characteristics was compared, and the potential causes of treatment failure were explored simultaneously. ResultsThe cure rate of HCV was 96.8%, and statistically significant differences were observed in aspartate transaminase (AST) and alanine transaminase (ALT) levels, previous antiviral therapy history and initial treatment regimens among patients with different HCV genotypes (all P<0.05). Among the multi-type combination regimens, the cure rate of sofosbuvir (SOF)-containing regimens was 97.00%, that of velpatasvir (VEL)-containing regimens was 95.45%, and the cure rate of other treatment regimens, including the regimens with ribavirin (RIB) intervention, was 93.10%. Among the patients with treatment failure, 45.00% had genotype 3, 40.00% had abnormal abdominal ultrasound results, and all presented with elevated baseline AST test levels. ConclusionThe clinical treatment of HCV patients should consider the differences in genotype and biochemical test results. DAAs combined regimens for HCV have achieved a high cure rate in Dehong Prefecture and are applicable to HCV patients with diverse clinical characteristics, providing research evidence for wider application.
4.Ubiquitination and Deubiquitination in Oral Squamous Cell Carcinoma: Potential Drug Targets
Han CHANG ; Meng-Xiang ZHAO ; Xiao-Feng JIN ; Bin-Bin YING
Progress in Biochemistry and Biophysics 2025;52(10):2512-2534
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy worldwide, accounting for more than 90% of all oral cancers, and is characterized by high invasiveness and poor long-term prognosis. Its etiology is multifactorial, involving tobacco use, alcohol consumption, and human papillomavirus (HPV) infection. Oral leukoplakia and erythroplakia are the main precancerous lesions lesions, with oral leukoplakia being the most common. Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways. Post-translational modifications (such as ubiquitination and deubiquitination) play key roles in regulating these pathways by controlling protein stability and activity. Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways. The ubiquitination/deubiquitination process mainly involves E3 ligases (E3s) that catalyze substrate ubiquitination, deubiquitinating enzymes (DUBs) that remove ubiquitin chains, and the 26S proteasome complex that degrades ubiquitinated substrates. Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumor-related proteins, thereby driving OSCC initiation and progression. Therefore, understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components. Here, we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway, Wnt/β-catenin pathway, Hippo pathway, and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways, along with potential drug targets. PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70% of OSCC cases. It is modulated by E3s (e.g., FBXW7 and NEDD4) and DUBs (e.g., USP7 and USP10): FBXW7 and USP10 inhibit signaling, while NEDD4 and USP7 potentiate it. Aberrant activation of the Wnt/β‑catenin pathway leads to β‑catenin nuclear translocation and induction of cell proliferation. This pathway is modulated by E3s (e.g., c-Cbl and RNF43) and DUBs (e.g., USP9X and USP20): c-Cbl and RNF43 inhibit signaling, while USP9X and USP20 potentiate it. Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis. This pathway is modulated by E3s (e.g., CRL4DCAF1 and SIAH2) and DUBs (e.g., USP1 and USP21): CRL4DCAF1 and SIAH2 inhibit signaling, while USP1 and USP21 potentiate it. Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance. This pathway is modulated by E3s (e.g., TRAF6 and LUBAC) and DUBs (e.g., A20 and CYLD): A20 and CYLD inhibit signaling, while TRAF6 and LUBAC potentiate it. Targeting these E3s and DUBs provides directions for OSCC drug research. Small-molecule inhibitors such as YCH2823 (a USP7 inhibitor), GSK2643943A (a USP20 inhibitor), and HOIPIN-8 (a LUBAC inhibitor) have shown promising antitumor activity in preclinical models; PROTAC molecules, by binding to surface sites of target proteins and recruiting E3s, achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors, for example, PU7-1-mediated USP7 degradation, offering new strategies to overcome traditional drug limitations. Currently, NX-1607 (a Cbl-b inhibitor) has entered phase I clinical trials, with preliminary results confirming its safety and antitumor activity. Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.
6.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
7.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
8.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
9.Impact of posterior cruciate ligament resection on the elasticity of the periarticular soft tissue sleeve in the knee joint.
Yun-Feng ZHANG ; De-Jin YANG ; Zhao-Lun WANG ; Yi-Xin ZHOU ; Hao TANG ; Xiang-Dong WU ; Han-Long ZHENG
China Journal of Orthopaedics and Traumatology 2025;38(10):1055-1060
OBJECTIVE:
To evaluate the effects of posterior cruciate ligament(PCL) resection on soft tissue elasticity and knee stability in total knee arthroplasty(TKA).
METHODS:
Six adult cadaveric knee specimens (involving 10 knees) were included in the study. With the assistance of the robotic system(TiRobot Recon, TINAVI, Beijing), total knee arthroplasty (TKA) was performed sequentially using cruciate retaining (CR) prostheses and posterior stabilizing (PS) prostheses. Between the two surgical procedures, the femoral and tibial osteotomy surfaces were not altered;only the posterior cruciate ligament (PCL) was resected and the intercondylar fossa was treated. After installing the femoral trial component, a soft tissue balance solver was used to apply tension ranging from 30 N to 90 N in 5 N increments at 0°, 10°, and 90° of knee flexion. Meanwhile, the medial and lateral joint gaps were measured synchronously. Based on the tension-gap coupling data, the equivalent elastic coefficients of the medial and lateral soft tissue sleeves at different knee flexion angles, as well as the range of the joint line convergence angle (JLCA) under fixed varus-valgus stress, were calculated. Additionally, the gap balance status under 80 N of tension was analyzed. Self-control comparisons of each indicator were conducted before and after PCL resection to analyze the change patterns.
RESULTS:
After PCL resection, in the fully extended position (knee flexion 0°). The medial equivalent elastic coefficient was 32.2 (25.7, 63.3) N·mm-1 for the CR prosthesis and 27.7 (22.0, 51.9) N·mm-1 for the PS prosthesis, and the statistically significant difference (P=0.013). The range of JLCA was 0.41°(0.26, 0.55)° for the CR prosthesis, which was smaller than 0.75° (0.40, 0.98)° for the PS prosthesis, and the difference was statistically significant(P=0.041). At 90° of knee flexion, the medial joint gap was 10.7(10.1, 11.7) mm for the CR prosthesis, which was smaller than 12.1(10.9, 15.1) mm for the PS prosthesis, with a statistically significant difference(P=0.011). No statistically significant differences were observed in other joint gaps.
CONCLUSION
PCL resection reduces the rigidity of the medial soft tissues in the fully extended knee and increases the medial joint gap in the flexed position, thereby affecting knee stability and balance. This finding suggests that PS and CR prostheses may require different morphological designs, and there should be differences in indications and osteotomy strategies between CR-TKA and PS-TKA. CR-TKA is more suitable for patients with preoperative medial soft tissue laxity.
Humans
;
Posterior Cruciate Ligament/physiopathology*
;
Knee Joint/physiopathology*
;
Arthroplasty, Replacement, Knee
;
Elasticity
;
Male
;
Female
;
Middle Aged
;
Aged
;
Biomechanical Phenomena
;
Adult
10.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*

Result Analysis
Print
Save
E-mail