1.Association of intrauterine benzo[a]pyrene exposure with benzo[a]pyrene diolepoxide (BPDE)-DNA adduct levels and pancreatic functional impairment in offspring rats
Rong CUI ; Yujian ZHENG ; Ying LU ; Xialidan Alifu
Journal of Preventive Medicine 2022;34(4):335-339
Objective:
To investigate the benzo[a]pyrene ( B[a]P ) diolepoxide ( BPDE )-DNA adduct levels in offspring rats with intrauterine exposure to B[a]P, and examine the effects of BPDE-DNA adduct levels on pancreatic functional impairment and glucose metabolism in offspring rats.
Methods:
Forty pregnant rats were randomly divided into the blank control group, standard-dose group, low-dose group, medium-dose group and high-dose group (daily dose of 0, 2, 200, 800, 1 600 μg/kg B[a]P, respectively), of 8 animals in each group. Rats in the B[a]P treatment groups were administered by oral gavage with a mixture of B[a]P and corn oil at a dose of 0.2 mL/100 g body weight since day 1 of pregnancy until 21 days after delivery, while rats in the blank control group were given the same volume of coin oil by oral gavage. The BPDE-DNA adduct levels were measured and the pancreatic development was observed in the offspring rats 2 and 21 days and 12 weeks after birth, and the correlation between pancreas volume index and dose of exposure to B[a]P was examined using Spearman's rank correlation analysis. In addition, glucose metabolism was measured in offspring rats 12 months after birth using glucose tolerance test ( GTT ) and insulin tolerance test ( ITT ).
Results:
There was no abnormal appearance, death, abortion or preterm birth in pregnant or offspring rats in the five groups, and no significant differences were seen in activity, diet, drinking water or mental status in rats. The greatest level of BPDE-DNA adducts was measured in offspring rats 2 days after birth, with median levels ( interquartile range ) of 1 089.60 ( 586.10 ) to 1 405.49 ( 346.47 ) pg/mL, and no BPDE-DNA adducts were found in offspring rats 12 weeks after birth. The pancreas volume index correlated negatively with the dose of exposure to B[a]P in offspring rats 2 ( rs=-0.620, P=0.001 ) and 21 days after birth ( rs=-0.801, P=0.001 ). Hypoplasia of pancreas with loose tissues was seen in offspring rats 2 days after birth, while well pancreatic development was found in offspring rats 12 weeks after birth, with tight exocrine portion. GTT showed an increase in glucose levels in offspring rats in all five groups following abdominal injection of glucose and declined 30 min post-injection ( F=365.578, P<0.001 ), and ITT showed a tendency towards a decline in glucose levels in offspring rats in all five groups ( F=461.215, P<0.001 ).
Conclusions
The levels of BPDE-DNA adducts in offspring rats increase with the dose of intrauterine B[a]P exposure, and insulin resistance and impaired glucose tolerance occur 12 months post-exposure to B[a]P. Intrauterine B[a]P exposure affects pancreatic development in offspring rats and causes abnormal glucose metabolism in adult offspring rats.
2.Effects of perinatal exposure to benzo[a]pyrene on the expressionof PDX-1 and TFAM in pancreas and mitochondrial DNA copynumber in offspring rats
CUI Rong ; ZHENG Yujian ; LU Ying ; Xialidan Alifu
Journal of Preventive Medicine 2024;36(1):65-69
Objective:
To observe the effects of perinatal exposure to benzo[a]pyrene (B[a]P) on the expression of pancreatic duodenal homeobox-1 (PDX-1) and mitochondrial transcription factor A (TFAM) and mitochondrial DNA copy number in offspring mice, and to explore the role of maternal exposure to B[a]P in the pancreatic function damage of offspring mice.
Methods:
Forty pregnant rats were randomly divided into the control group, the lowest dose group (2 μg/kg), the low dose group (200 μg/kg), medium dose group (800 μg/kg) and high dose group (1 600 μg/kg), with 8 rats in each group. From day 1 of pregnancy, each exposed group was given 0.2 mL/100 g body weight of B[a]P and corn oil mixture by gavage once a day until 3 weeks after delivery, while the control group was given the same dose of corn oil. The pancreatic tissue of three-week-old mice were collected after abdominal anesthesia for insulin immunohistochemical detection. The protein and mRNA expression levels of PDX-1 and TFAM, as well as mitochondrial DNA copy number were detected. Spearman rank correlation analysis was used to analyze the correlation between B[a]P exposure dose and the above indicators.
Results:
The insulin-positive area ratio and average optical density of insulin in the medium and the high dose groups were significantly lower than those in the control group (all P<0.05). The insulin-positive area ratio and average optical density of insulin were negatively correlated with the B[a]P dose (rs=-0.862 and -0.858, both P<0.05). The protein expression levels of PDX-1 and TFAM in the high dose group were significantly lower than those in the control group (both P<0.05). The protein expression levels of PDX-1 and TFAM were negatively correlated with the B[a]P dose (rs=-0.756 and -0.799, both P<0.05). The mRNA expression levels of PDX-1 and mitochondrial DNA copy number in the medium and high dose groups were significantly lower than those in the control group, and the mRNA expression level of TFAM in the high dose group was significantly lower than that in the control group (all P<0.05). The mRNA expression levels of PDX-1, TFAM, and mitochondrial DNA copy number were negatively correlated with the B[a]P dose (rs=-0.722, -0.550 and -0.840, all P<0.05).
Conclusion
Perinatal exposure to B[a]P can induce the damage of islet β cells in offspring rats, which may be related to the decreased expression of PDX-1 and TFAM and the copy number of mitochondrial DNA.