1.MCPIP1 induces cell cycle arrest in breast cancer cell line MDA-MB-231
Wenbao LU ; Mingming LIU ; Ruijuan XIU
Basic & Clinical Medicine 2017;37(5):608-613
Objective To investigate the functions of Monocyte chemotactic protein-induced protein 1 (MCPIP1) in human breast cancer cell line MDA-MB-231.Methods MDA-MB-231 cells were transfected with GFP-tagged MCPIP1 by Tet-on inducing expression system.Endogenous MCPIP1 was knocked down by stable expressing shRNA.MTT assay was performed to measure the growth of MDA-MB-231 cells after overexpression or knockdown of MCPIP1.FACS method was used to analyze cell cycle in MDA-MB-231 cells.Real-time PCR was used to test the expression of cell cycle-related mRNAs expression and their half-lives.RNA-IP experiment was conducted to detect the mRNA directly enriched by MCPIP1.Luciferase assay was performed to determine whether the mRNA decay was mediated through 3′UTR.Results MCPIP1 overexpression significantly inhibited cell proliferation(P<0.05), while knockdown MCPIP1 promoted cell proliferation with statistical significances (P<0.05).MCPIP1 induced cell cycle arrest in MDA-MB-231 with statistical significance (P<0.01).MCPIP1 overexpression reduced the half-lives of cell cycle mRNAs (CDK2,CDK6,cyclin D1,cyclin E1,respectively) with significance (P<0.01).In addition, cell cycle-related mRNAs were able to be pulled down by GFP-MCPIP1 but not isotype IgG(P<0.05).Compared with control vector, MCPIP1 significant suppressed luciferase activities of all four 3′UTR reporters (P<0.05).Conclusions MCPIP1 functions as a tumor suppressor in human breast cancer cell line MDA-MB-231 through inducing G1 cell cycle arrest.
2.Preliminary screening of different permeation enhancers in transcutaneous immunization with inactivated human highly pathogenic avian influenza vaccine
Yanli SUN ; Honggang ZHANG ; Yanhua SUN ; Wenbao LU ; Xiliang WANG
Chinese Journal of Microbiology and Immunology 2010;30(10):925-930
Objective To screen the potent permeation enhancers used in transcutaneous immunization with inactivated highly pathogenic avian influenza vaccine. Methods Five different permeation enhancers, ethanol, propylene glycol, dimethyl sulfoxide, ratinoic acid, oleic acid, were used to treat the skin of BALB/c mice before transcutaneous immunization. Sera were collected before the flist transcutaneous immunization and every two weeks post immunization. The titers of influenza virus-specific humoral IgG and IgA were assayed in serum, lung and nasal lavages by ELISA. The titers of hemagglutination inhibition ( HAI), IFN-γand IL-4 produced by splenic lymphocytes were also detected. Except that, clinical symptom of the skin in different time points and skin pathological changes were observed. Results The serum IgG titers, HAI titers and the influenza virus-specific lgA and IgG in lung and nasal lavages in the groups of HA +CT + DMSO, HA + CT + RA and HA + CT + OA were significantly higher than those of HA and HA + CT groups( P <0.05). Moreover, the numbers of splenic lymphocytes producing IFN-γ and IL-4 were increased in the above three groups than those in control groups. In addition, no evident clinical symptoms were observed, but stratum corneum of the skin in different groups showed different changes. Conclusion DMSO,RA and OA are potent permeation enhancers in mouse model inoculated with inactivated high pathogenic avian influenza vaccine transcutaneously.
3.Impacting factors and suggestions on implementing clinical pathway
Peng HU ; Yu WANG ; Jianhua LU ; Dachuan LI ; Wenbao ZHANG
Chinese Journal of Hospital Administration 2012;28(1):15-18
The main impacting factors on implementing clinical pathway were analyzed by applying fishbone diagram.The factors include policy factors,organizational factors and personal factors.It was suggested to improve the trial work of implementing clinical pathway management by reforming the medical care payment system,putting the clinical pathway management into the evaluation system,building up medical information system,putting more efforts on promotion and enhancing cooperation among related departments.
4.Isolation and identification brain microvessel pericytes in rats
Weiwei QIN ; Wenbao LU ; Shuying LIU ; Hongwei LI ; Ruijuan XIU
International Journal of Cerebrovascular Diseases 2011;19(7):531-534
Objective To explore the method of primary isolation, cultivation and identification of rat brain microvessel pericytes. Methods The brain tissue of 10 3 week-old Wistar rats was separated sterilely. The brain microvessel fragments were separated using two-step enzyme digestion and one-step gradient centrifugation and were seeded in 35-mm dishes for primary culture. The cell morphology was observed by phase contrast microscopy; the immunofluorescence assay was used to identify the associated antigns, such as the α-smooth muscle actin (α-SMA), neuron-glial antigen 2 (NG2), von Willebrand factor (vWF), and glial fibrillary acidic protein (GFAP). Methyl thiazolyl tetrazolium was used to determine the cell growth curve. Results Pericytes climbed out from the adherent brain microvascular fragments around,showing polygonal, and the cell fusion was 95% after 12-14 days. Immunofluorescence staining revealed that the molecular markers of the pericytes α-SMA and NG2 related antigens showed double positive, while the vWF and GFAP related antigens showed double negative and the cultured cells were confirmed as brain microvascular pericytes. The growth rate of primary cells was slower. The passage cells entered into logarithmic growth phase after 36 to 60 hours and entered into plateau phase after 72 to 108 hours. Conclusions This method may successfully isolate rat brain microvascular pericytes with higher purity.
5.Establishment of an in vitro blood-brain harrier modal by coculturing brain microvascular endothelial cells and pericytes
Wenbao LU ; Weiwei QIN ; Qiuju ZHANG ; Hongwei LI ; Shuying LIU ; Ruijuan XIU
International Journal of Cerebrovascular Diseases 2012;20(5):338-342
Objective To establish a stable in vitro model of blood-brain barrier (BBB) simulating in vivo state using the primary-cultured rat brain microvascular endothelial cells (BMVECs) and pericytes.Methods The primary rat BMVECs and pericytes were isolated,purified and cultured.The isolated cells were identified by immunocytochemical staining method.An in vitro model of BBB was constructed using Transwell inserts (pore size 0.4 μm) coculture.Its barrier function was evaluated by the 4-hour leakage test,tight junction protein identification,transendothelial resistance detection,and permeability test.The difference between the cocultured model and simple BMVEC model across the membrane resistance values,and the permeability difference of the small molecule sodium fluorescein (Na-F) were compared.Results Confluent BMVEC monolayers demonstrated a typical cobblestone appearance and the pericytes displayed irregular shape and overlapping growth.Immunodouble labeling technique identification showed that the pericytes positively expressed α-srmooth muscle actin (α-SMA) and neuron-glial antigen 2 (NG2); after the fusion of cocultured model endothelial cells,the surface leakage test became positive; immnocytochemical staining shows that a continuous and dense tight junction formed between the endothelial cells; compared to the BMVEC model,the transendothelial electrical resistance of the cocultured model increased significantly (190.762 ± 10.326 Ω/cm2 vs.96.503 ± 8.012 Ω/cm2; t=- 24.489,P <0.01),and the permeability decreased significantly (56.149% ± 3.572% of the single endothelial model; t =19.330,P < 0.01 ).Conclusions The primary isolated rat BMVECs and pericytes cocultured the morphology,structure and barrier function of in vitro model have the basic characteristics of BBB,and they have provided a useful tool for the research of BBB.
6.Construction of an infectious cDNA clone derived from foot-and-mouth disease virus O/QYYS/s/06.
Shousheng LU ; Qizu ZHAO ; Xiangtao LIU ; Yanwei SUN ; Tao REN ; Guihong ZHANG ; Wenbao QI ; Yunfeng ZHA ; Lingchen KONG ; Han ZHANG ; Huiying FAN ; Ming LIAO
Chinese Journal of Biotechnology 2009;25(7):982-986
After sequencing, we amplified and cloned foot-and-mouth disease virus (FMDV) O/QYYS/s/06 whole genome by three fragments. These three fragments were cloned into vector P43 one by one to construct recombinant plasmid P43C, which carried the full-length cDNA of FMDV O/QYYS/s/06. Then, plasmid P43C and plasmid T7 expressing T7 RNA polymerase were co-transfected into BHK-21 cells. After 48 h, we harvested the culture broth from transfected BHK-21 cells and inoculated into 2-3 day-old sucking mice. After four generation passage, the virus harvested from sucking mice was confirmed to be type O FMDV by the indirect hemagglutination test, sucking mice's neutralization test and sequencing. The results showed that we have successfully constructed the full-length cDNA clone of FMDV O/QYYS/s/06 strain.
Animals
;
Animals, Newborn
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
DNA, Viral
;
biosynthesis
;
genetics
;
Foot-and-Mouth Disease
;
virology
;
Foot-and-Mouth Disease Virus
;
classification
;
genetics
;
pathogenicity
;
Mice
;
Transcription, Genetic
;
Transfection