1.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.
2.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
3.Kaixin San-medicated serum attenuates Aβ_(25-35)-induced injury in SH-SY5Y cells by regulating autophagy.
Han-Wen XING ; Yi YANG ; Yan-Ping YIN ; Lan XIE ; Fang FANG
China Journal of Chinese Materia Medica 2025;50(2):313-321
The aim of this study is to investigate the regulation of Kaixin San-medicated serum(KXS-MS) on autophagy induced by Aβ_(25-35) in SH-SY5Y cells. The SH-SY5Y cell model of Aβ_(25-35)(25 μmol·L~(-1))-induced injury was established, and different concentrations of KXS-MS were added into the culture media of cells, which were then incubated for 24 h. Cell viability was measured by the methyl thiazolyl tetrazolium(MTT) assay. The protein levels of microtubule-associated protein 1 light chain 3(LC3)Ⅰ, LC3Ⅱ, protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR were assessed by Western blot. Furthermore, the combination of rapamycin(Rapa)/3-methyladenine(3-MA) and low concentration of KXS-MS was added to the culture medium of SH-SY5Y cells injured by Aβ_(25-35), and the cell viability and the expression levels of the above proteins were determined. The results showed that Aβ_(25-35) decreased the cell viability, up-regulated the expression levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ, and down-regulated the expression levels of p-Akt, p-mTOR, p-Akt/Akt, and p-mTOR/mTOR. Compared with the Aβ_(25-35) model group, KXS-MS treatment attenuated Aβ_(25-35)-induced injury and enhanced the survival of SH-SY5Y cells. Meanwhile, KXS-MS down-regulated the LC3Ⅱ/LC3Ⅰ level and up-regulated the p-Akt/Akt and p-mTOR/mTOR levels. Compared with the low-concentration KXS-MS group, Rapa did not affect the cell survival and the levels of p-Akt and p-Akt/Akt, while it up-regulated the levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ and down-regulated the levels of p-mTOR and p-mTOR/mTOR. 3-MA significantly reduced the cell survival rate and p-Akt, p-Akt/Akt level in the KXS-MS group, while it had no significant effect on the levels of LC3Ⅱ, LC3Ⅱ/LC3Ⅰ, p-mTOR, and p-mTOR/mTOR. The above results indicate that KXS-MS exhibits protective effects against Aβ_(25-35)-induced damage in SH-SY5Y cells by up-regulating Akt/mTOR activity to inhibit autophagy.
Humans
;
Autophagy/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Amyloid beta-Peptides/toxicity*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
;
Peptide Fragments/toxicity*
;
Microtubule-Associated Proteins/genetics*
4.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
5.Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors.
Jing PANG ; Mao-Xing XU ; Xiao-Yu WANG ; Xu FENG ; Yi-Man DUAN ; Xiao-Yan ZHENG ; Yu-Qian CHEN ; Wen YIN ; Ying LIU ; Ju-Xue LI
Asian Journal of Andrology 2025;27(5):627-637
Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory ( Star ) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor ( Ar ) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Animals
;
Male
;
Leydig Cells/metabolism*
;
Mice
;
Dependovirus/genetics*
;
Sertoli Cells/metabolism*
;
Gene Silencing
;
Genetic Vectors
;
Testis/cytology*
6.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
7.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
8.Efficacy and Safety of Erzhu Jiedu Decoction Granules in Treating Mid-advanced Hepatitis B Virus-Associated Primary Liver Cancer Patients with Pi (Spleen)-Deficiency and Dampness-Heat Syndrome.
Yang CHENG ; Hao-Yi WANG ; Cheng-Yi WAN ; Jie-Wen SHI ; Yuan-Yuan JIN ; Sheng-Li HE ; Bao-Bing YIN ; Jian-Jie CHEN
Chinese journal of integrative medicine 2025;31(5):394-401
OBJECTIVE:
To assess the efficacy and safety of Erzhu Jiedu Decoction (EZJDD) Granules in treating mid-advanced hepatitis B virus-associated primary liver cancer (HBV-PLC) patients with Pi (Spleen)-deficiency and dampness-heat syndrome.
METHODS:
From January 2021 to June 2023, a cohort of 132 patients were enrolled and randomly assigned to a control group or a EZJDD group according to the random numbers, with 66 patients in each group. The patients in the control group received conventional treatment for 3 months, followed by a 3-month follow-up. In addition to the conventional treatment, patients in the EZJDD group were administered EZJDD Granules (10.9 g/pack, 2 packs twice per day) orally for same duration. Progression-free survival (PFS) as primary outcome was evaluated by Kaplan Meier method. Karnofsky performance status (KPS) scores were used to assess the quality of life in two groups before and after treatment, and survival rates were determined as well. The efficacy of Chinese medicine syndrome was calculated with Nimodipine method. Liver function, tumor indicators and T lymphocyte subsets were measured, respectively. Safety indicators were recorded and assessed.
RESULTS:
Of the 116 patients who completed the study, 57 were in the control group and 59 in the EZJDD group. The median PFS was 3.53 months (106 days) in the EZJDD group compared to 2.33 months (70 days) in the control group (P=0.005). Six-month survival rate was 52.63% (30/57) in the control group and 69.49% (41/59) in the EZJDD group (P=0.039). The median KPS score in the EZJDD group [70(63, 90)] was higher than that in the control group [70(60, 80)] (P=0.013). The total effective rate of CM syndrome was 52.63% (30/57) in the control group and 77.97% (46/59) in the EZJDD group (P=0.005). The levels of alpha fetoprotein, alpha fetoprotein-L3, alpha-L-fucosidase and protein induced by Vitamin K absence or antagonist- II in the EZJDD group increased less than the control group (P>0.05). CD8+ levels were decreased, while CD3+ and CD4+ levels, as well as CD4+/CD8+ ratio were significantly increased in the EZZJD group (P<0.05). No treatment-related adverse reactions were observed during the study.
CONCLUSION
EZJDD Granules significantly prolonged the median PFS and improved 6-month survival rate in patients with mid-advanced HBV-PLC (Registration No. ChiCTR2200056922).
Humans
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Liver Neoplasms/complications*
;
Hepatitis B virus/physiology*
;
Hepatitis B/complications*
;
Treatment Outcome
;
Adult
;
Spleen/drug effects*
;
Quality of Life
;
Medicine, Chinese Traditional
;
Aged
;
Syndrome
9.Enhancement of Ca2+ Signal Strength in Astrocytes in the Lateral Septum Improves Cognitive Disorders in Mice After Hemorrhagic Shock and Resuscitation.
Wen-Guang LI ; Lan-Xin LI ; Rong-Xin SONG ; Xu-Peng WANG ; Shi-Yan JIA ; Xiao-Yi MA ; Jing-Yu ZHANG ; Gang-Feng YIN ; Xiao-Ming LI ; Li-Min ZHANG
Neuroscience Bulletin 2025;41(8):1403-1417
Hemorrhagic shock is a common clinical emergency that can aggravate cell injury after resuscitation. Astrocytes are crucial for the survival of neurons because they regulate the surrounding ionic microenvironment of neurons. Although hemorrhagic shock and resuscitation (HSR) injury can impair cognition, it remains unclear how this insult directly affects astrocytes. In this study, we established an HSR model by bleeding and re-transfusion in mice. The social interaction test and new object recognition test were applied to evaluate post-operative cognitive changes, and the results suggest that mice experience cognitive impairment following exposure to HSR. In the HSR group, the power spectral density of β and γ oscillations decreased, and the coupling of the θ oscillation phase and γ oscillation amplitude was abnormal, which indicated abnormal neuronal oscillation and cognitive impairment after HSR exposure. In brief, cognitive impairment in mice is strongly correlated with Ca2+ signal strength in lateral septum astrocytes following HSR.
Animals
;
Astrocytes/metabolism*
;
Shock, Hemorrhagic/metabolism*
;
Resuscitation/adverse effects*
;
Male
;
Mice
;
Calcium Signaling/physiology*
;
Mice, Inbred C57BL
;
Septal Nuclei/metabolism*
;
Cognitive Dysfunction/etiology*
;
Disease Models, Animal
;
Cognition Disorders/etiology*
10.Impacts of delivery techniques,treatment sites and dose-volume algorithms on results of three-dimensional dosimetric verification for intensity-modulated radiation therapy plans
Xian-Cheng PENG ; Yan-Ming LIU ; Wen-Li LU ; Han-Yin ZHANG ; Ying LI ; Xin YI
Chinese Medical Equipment Journal 2024;45(11):54-59
Objective To investigate the influence of different delivery techniques,treatment sites and dose-volume algorithms on the results of three-dimensional dosimetric verification for intensity-modulated radiation therapy(IMRT)plans and the importance of individualized quality assurance(QA)evaluation standard for radiotherapy plans.Methods Totally 350 tumor patients receiving radiotherapy at some hospital from January 2017 to February 2022 had their three-dimensional dosimetric verification results of IMRT plans selected retrospectively and underwent data collection with COMPASS system,and then were grouped in terms of delivery technique(fixed-beam IMRT and volumetric modulated arc therapy),treatment site(neck,chest and abdomen)and dose-volume algorithm(anisotropic analytical algorithm and collapsed cone convolution algorithm).All the groups were compared based on the 3%/2 mm criterion with regard to the Gamma pass rate of 10%prescription dose area(GP10%),Gamma pass rate(GP50%)and mean Gamma index(μGI5o%)of 50%prescription dose area,dose of 95%target volume(D95%)and its mean dose(Dmean),parotid gland mean dose(Dmean),dose of 1%spinal cord volume(D1%),dose of 1%brain stem volume(D1%)of head and neck radiotherapy plan,heart and lung mean dose(Dmean)and dose of 1%spinal cord volume(D1%)of chest radiotherapy plan and bladder,rectum and femur mean dose of abdomen radiotherapy plan(Dmean).SPSS 26.0 software was used for statistical analysis.Results For different delivery techniques,significant differences were found in all the QA results except GP50%of abdomen radiotherapy plan(P<0.05).For different treatment sites,the differences were statistically significant between the QA results of head and neck radiotherapy plan and abdomen plan and between those of chest radio-therapy plan and abdomen radiotherapy plan(P<0.05),while were not significant between the QA results of head and neck radiotherapy plan and chest radiotherapy plan(P>0.05).For different dose-volume algorithms,the QA results had significant differences except D5%of abdomen radiotherapy planning target volume and Dmean and D1%of chest radiotherapy PTV(P<0.05).Conclusion Dosimetric verification results vary depending on the delivery technique,treatment site and dose-volume algorithm.Statistical process control recommended by AAPM TG-218 report may be involved in to establish individualized QA standard for radiotherapy plans in case universal action limits are not appropriate.[Chinese Medical Equipment Journal,2024,45(11):54-59]

Result Analysis
Print
Save
E-mail