1.Isoliquiritigenin alleviates abnormal endoplasmic reticulum stress induced by type 2 diabetes mellitus
Kai-yi LAI ; Wen-wen DING ; Jia-yu ZHANG ; Xiao-xue YANG ; Wen-bo GAO ; Yao XIAO ; Ying LIU
Acta Pharmaceutica Sinica 2025;60(1):130-140
Isoliquiritigenin (ISL) is a chalcone compound isolated from licorice, known for its anti-diabetic, anti-cancer, and antioxidant properties. Our previous study has demonstrated that ISL effectively lowers blood glucose levels in type 2 diabetes mellitus (T2DM) mice and improves disturbances in glucolipid and energy metabolism induced by T2DM. This study aims to further investigate the effects of ISL on alleviating abnormal endoplasmic reticulum stress (ERS) caused by T2DM and to elucidate its molecular mechanisms.
2.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
3.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
4.DNAzyme targeting RIP3 suppresses NLRP3-mediated necroinflammation for the treatment of inflammatory diseases.
Jiaxin JIA ; Hugang ZHANG ; Guangxu FANG ; Yang LI ; Kai WEN ; Hanyu LIU ; Haobo HAN ; Quanshun LI
Acta Pharmaceutica Sinica B 2025;15(11):5908-5932
Necroptosis, a form of programmed cell death, initiates a series of biological responses and further culminates in necroinflammatory processes, consequently limiting the efficacy of cytokine antagonists in treating inflammatory diseases. To address this issue, DNAzyme R3-Dz specifically targeting receptor-interacting protein kinase 3 (RIP3) mRNA, a necrosome component, has been successfully developed and studied to elucidate the mechanism in cleaving its target mRNA. Then a polyamidoamine (PAMAM) derivative was constructed through the modification of nucleobase analog (termed AP) to achieve the R3-Dz delivery to macrophages. The AP/R3-Dz nanoparticles effectively downregulated the RIP3 expression, leading to subsequent decrease in the levels of reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), ultimately inhibiting the necroinflammatory processes mediated by the NOD-like receptor family pyrin domain-containing 3 (NLRP3). Finally, AP/R3-Dz nanoparticles and their combination with the NLRP3 inhibitor MCC950 suppressed the necrotic phenotype and ameliorated the disease progression in diverse models, including gouty arthritis, autoimmune hepatitis and rheumatoid arthritis. In summary, the AP/R3-Dz nanoparticles in combination with MCC950 have been demonstrated to achieve the intervention in necroptosis and inflammation by dual disruption of the intricate feedback loop of necroinflammation and thus have promising potential in the treatment of inflammatory diseases.
5.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
6.Progress in Animal and Clinical Studies on the Impact of Bisphosphonates on Implant Stability.
Ling-Lu JIA ; Zi-Kai GONG ; Wen-Xi ZHAO ; Yong WEN
Acta Academiae Medicinae Sinicae 2025;47(4):628-633
Bisphosphonates(BP),a class of commonly used medications for treating osteoporosis and bone malignancies,significantly affect bone metabolism.When dental implants are placed in patients receiving BP,the potential impacts of BP on the formation and long-term maintenance of implant osseointegration cannot be ignored.In addition,the influence of dental implants on the occurrence of BP-related osteonecrosis of the jaw is garnering attention.This article explores the influences of BP on the stability of dental implants based on a review of previous animal and clinical studies,discusses the impact of dental implants on the occurrence of BP-related osteonecrosis of the jaw,and proposes suggestions for the dental implant treatment of patients taking BP in clinical practice.This review is expected to provide a theoretical basis for the related research and clinical treatment.
Humans
;
Dental Implants
;
Animals
;
Diphosphonates/pharmacology*
;
Osseointegration/drug effects*
;
Bisphosphonate-Associated Osteonecrosis of the Jaw
7.Evaluation of the activity of sturgeon cartilage peptides and preparation of ointments
Peng LEI ; Kai-chao SONG ; Zheng-wen XIE ; Yi-fan QI ; Yu-jia ZHANG ; Wen-sheng ZHENG
Acta Pharmaceutica Sinica 2024;59(7):2135-2142
Sturgeon cartilage has a wide range of applications as it is rich in biologically active substances such as chondroitin sulphate and protein. In this study, the safety evaluation of sturgeon cartilage peptide in NIH/3T3 and C2C12 cells was conducted, and the results showed that sturgeon cartilage peptide did not induce apoptosis and necrosis in NIH/3T3 and C2C12 cells compared to the blank control, which provides an
8.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
9.A Rapid Non-invasive Method for Skin Tumor Tissue Early Detection Based on Bioimpedance Spectroscopy
Jun-Wen PENG ; Song-Pei HU ; Zhi-Yang HONG ; Li-Li WANG ; Kai LIU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2024;51(5):1161-1173
ObjectiveIn recent years, with the intensification of environmental issues and the depletion of ozone layer, incidence of skin tumors has also significantly increased, becoming one of the major threats to people’s lives and health. However, due to factors such as high concealment in the early stage of skin tumors, unclear symptoms, and large human skin area, most cases are detected in the middle to late stage. Early detection plays a crucial role in postoperative survival of skin tumors, which can significantly improve the treatment and survival rates of patients. We proposed a rapid non-invasive electrical impedance detection method for early screening of skin tumors based on bioimpedance spectroscopy (BIS) technology. MethodsFirstly, we have established a complete skin stratification model, including stratum corneum, epidermis, dermis, and subcutaneous tissue. And the numerical analysis method was used to investigate the effect of dehydrated and dry skin stratum corneum on contact impedance in BIS measurement. Secondly, differentiation effect of different diameter skin tumor tissues was studied using a skin model after removing the stratum corneum. Then, in order to demonstrate that BIS technology can be used for detecting the microinvasion stage of skin tumors, we conducted a simulation study on the differentiation effect of skin tumors under different infiltration depths. Finally, in order to verify that the designed BIS detection system can distinguish between tumor microinvasion periods, we conducted tumor invasion experiments using hydrogel treated pig skin tissue. ResultsThe simulation results show that a dry and high impedance stratum corneum will bring about huge contact impedance, which will lead to larger measurement errors and affect the accuracy of measurement results. We extracted the core evaluation parameter of relaxed imaginary impedance (Zimag-relax) from the simulation results of the skin tumor model. When the tumor radius (Rtumor) and invasion depth (h)>1.5 mm, the designed BIS detection system can distinguish between tumor tissue and normal tissue. At the same time, in order to evaluate the degree of canceration in skin tissue, the degree of tissue lesion (εworse) is defined by the relaxed imaginary impedance (Zimag-relax) of normal and tumor tissue (εworse is the percentage change in virtual impedance of tumor tissue relative to that of normal tissue), and we fitted a Depth-Zimag-relax curve using relaxation imaginary impedance data at different infiltration depths, which can be applied to quickly determine the infiltration depth of skin tumors after being supplemented with a large amount of clinical data in the future. The experimental results proved that when εworse=0.492 0, BIS could identify microinvasive tumor tissue, and the fitting curve correction coefficient of determination was 0.946 8, with good fitting effect. The simulation using pig skin tissue correlated the results of real human skin simulation with the experimental results of pig skin tissue, proving the reliability of this study, and laying the foundation for further clinical research in the future. ConclusionOur proposed BIS method has the advantages of fast, real-time, and non-invasive detection, as well as high sensitivity to skin tumors, which can be identified during the stage of tumor microinvasion.
10.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.

Result Analysis
Print
Save
E-mail