1.Autonomous drug delivery and scar microenvironment remodeling using micromotor-driven microneedles for hypertrophic scars therapy.
Ting WEN ; Yanping FU ; Xiangting YI ; Ying SUN ; Wanchen ZHAO ; Chaonan SHI ; Ziyao CHANG ; Beibei YANG ; Shuling LI ; Chao LU ; Tingting PENG ; Chuanbin WU ; Xin PAN ; Guilan QUAN
Acta Pharmaceutica Sinica B 2025;15(7):3738-3755
Hypertrophic scar is a fibrous hyperplastic disorder that arises from skin injuries. The current therapeutic modalities are constrained by the dense and rigid scar tissue which impedes effective drug delivery. Additionally, insufficient autophagic activity in fibroblasts hinders their apoptosis, leading to excessive matrix deposition. Here, we developed an active microneedle (MN) system to overcome these challenges by integrating micromotor-driven drug delivery with autophagy regulation to remodel the scar microenvironment. Specifically, sodium bicarbonate and citric acid were introduced into the MNs as a built-in engine to generate CO2 bubbles, thereby enabling enhanced lateral and vertical drug diffusion into dense scar tissue. The system concurrently encapsulated curcumin (Cur), an autophagy activator, and triamcinolone acetonide (TA), synergistically inducing fibroblast apoptosis by upregulating autophagic activity. In vitro studies demonstrated that active MNs achieved efficient drug penetration within isolated scar tissue. The rabbit hypertrophic scar model revealed that TA-Cur MNs significantly reduced the scar elevation index, suppressed collagen I and transforming growth factor-β1 (TGF-β1) expression, and elevated LC3 protein levels. These findings highlight the potential of the active MN system as an efficacious platform for autonomous augmented drug delivery and autophagy-targeted therapy in fibrotic disorder treatments.
2.Effect of exercise prescription intervention among patients with type 2 diabetes mellitus
WEN Jinbo ; ZHANG Ting ; ZHAO Qian ; LIU Jing ; SUN Zhongming ; HOU Jianbin ; LU Zhengquan ; XU Yuting ; MA Xinxiong ; PAN Enchun
Journal of Preventive Medicine 2025;37(12):1211-1216
Objective:
To evaluate the effect of exercise prescription intervention among patients with type 2 diabetes mellitus (T2DM), so as to provide the evidence for guiding appropriate physical activity and glycemic control in this population.
Methods:
In July 2023, T2DM patients managed by two community health service centers in Qingjiangpu District, Huai'an City, Jiangsu Province, were selected as the study participants and randomly assigned divided into a control group and an intervention group. The control group received routine chronic disease management under the basic public health services, while the intervention group, in addition to receiving the same routine chronic disease management, was provided with exercise prescription to guide their physical activity at baseline (T0), after 3 months of intervention (T1), and after 6 months of intervention (T2). Data on weight-related indicators, glycated hemoglobin (HbA1c), and blood lipid were collected through physical examinations and laboratory tests at T0 and after 12 months of intervention (T3). The differences in indicators between the two groups before and after the intervention were analyzed using generalized estimating equations.
Results:
The intervention group consisted of 197 patients, including 99 males, accounting for 50.25%. The median disease duration was 7.10 (interquartile range, 7.80) years, and 113 patients had suboptimal HbA1c levels, accounting for 57.36%. The control group included 196 patients, including 99 females, accounting for 50.51%. The median disease duration was 6.10 (interquartile range, 7.00) years, and 100 patients had suboptimal HbA1c levels, accounting for 51.02%. Before the intervention, no statistically significant differences were observed between the two groups in gender, educational level, disease duration, pharmacological treatment, smoking, alcohol consumption, and HbA1c levels (all P>0.05). In the intervention group, the proportion of participants engaging in aerobic exercise and strength training increased from 78.17% and 8.12% at T0 to 85.79% and 16.24% at T3, respectively (both P<0.05). The results of the generalized estimating equations revealed significant interactions between group and time for waist-to-hip ratio, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) following the intervention (all P<0.05). A statistically significant difference in waist-to-hip ratio was found between the two groups (P<0.05), with a greater reduction observed in the intervention group compared to the control group. Significant differences in TC and LDL-C levels were noted across different intervention time points (both P<0.05). Specifically, the intervention group demonstrated reductions of 0.35 mmol/L in TC and 0.42 mmol/L in LDL-C from baseline to follow-up (both P<0.05).
Conclusion
The 12-month exercise prescription intervention can effectively enhance exercise participation and reduce waist-to-hip ratio, TC, and LDL-C levels among patients with T2DM.
3.Analysis of the biosynthesis pathways of phenols in the leaves of Tetrastigma hemsleyanum regulated by supplemental blue light based on transcriptome sequencing
Hui-long XU ; Nan YANG ; Yu-yan HONG ; Meng-ting PAN ; Yu-chun GUO ; Shi-ming FAN ; Wen XU
Acta Pharmaceutica Sinica 2024;59(10):2864-2870
Analyze the changes in phenolic components and gene expression profiles of
4.Nucleophosmin acetylation and construction and expression of its modified sites mutants in breast cancer
Jing-Wei HAO ; Ting PAN ; Yue LI ; Wen-Bin ZHU ; Wen-Bo DUAN ; Li-Kun LIU ; Li-Ling YUE ; Yun-Long LIU ; Xiu-Li GAO
Acta Anatomica Sinica 2024;55(2):196-202
Objective To determine the acetylation level of nucleophosmin(NPM)in female breast cancer and to discuss its function through mutation of modified lysine sites.To construct positive and negative NPM mutants on its acetylated lysine sites and to express them in breast cancer cells.Methods Acetylation level and acetylated lysine sites of NPM in three breast cancer tissues and para-carcinoma tissues were detected by acetylome technology;NPM mutants were constructed by site-directed mutagenesis PCR,specific PCR products were digested by DpnI and transformed into Escherichia coli(E.coli)to obtain specific plasmids for mutants;The accuracy of mutants were verified by double restriction enzyme digestion and sequencing;The mutants were expressed in BT-549 cells by transient transfection and verified by RT-PCR method.Protein expression and acetylation level of NPM were validated by Western blotting;Function of NPM acetylation was analyzed by proteomic detection and bioinformatic analysis.Results The 27th and 32nd lysine of NPM were highly acetylated in breast cancer tissues,which were 2.76 and 2.22 times higher than those in adjacent normal tissues,respectively;The NPM mutants showed the same molecular weight as that of wild type NPM and contained expected mutation sites;Corresponding NPM mRNA levels of BT-549 cells transfected with NPM mutants were significantly increased.With the increase of wild type NPM expression level,NPM acetylation level increased,while decreased after 27th lysine underwent negative mutation.NPM acetylation can significantly change the expression levels of 101 proteins in BT-549 cells,which are enriched in regulation of cellular macromolecule biosynthesis,DNA-template transcription,RNA biosynthesis and RNA metabolism process.Conclusion NPM is highly acetylated in breast cancer and can play a key role in cellular macromolecule biosynthesis,DNA-templated transcription,RNA biosynthesis and RNA metabolism process.
5.Application of dezocine in patient-controlled intravenous analgesia after laryngectomy:a prospective randomized controlled study
Wen-Jing YI ; Li-Chun WAN ; Yi-Ting PAN ; Jie LI
Fudan University Journal of Medical Sciences 2024;51(2):238-242
Objective To investigate different doses of the analgesic effects of dezocine comparing with sufentanil after laryngectomy.Methods A total of 129 patients who underwent elective partial laryngectomy from Feb 2022 to Jan 2023 were randomly assigned to dezocine 0.5 mg/kg group(group D1),dezocine 0.6 mg/kg group(group D2)and sufentanil 2 μg/kg group(group S).Twenty-four hours amount of drugs,the visual analogue scale(visual analogue scale,VAS)and 48 h total pressing times of PCA(patient-controlled intravenous analgesia,PCIA)were compared among the three groups at 6,12,24 and 48 h after operation,and the postoperative adverse reactions(nausea,vomiting,dizziness,urinary retention and respiratory depression)were recorded.Results There was no significant difference in 24 h amount of drugs among the three groups.The VAS score of group D1 was higher than that of group S at 6 h postoperatively(P<0.05),but did not differ significantly among the three groups at 12,24 and 48 h.There was no significant differences in the number of compressions and postoperative adverse reactions among the three groups.Conclusion Compared with sufentanil,0.6 mg/kg dezocine can provide the same degree of analgesic effect.However,no advantage was found to reduce adverse reactions.
6.Immune checkpoint inhibitor related tuberculosis:a case report and literature analysis
Wen-Ting JIN ; Jia-Yi NI ; Bi-Jie HU ; Jue PAN
Fudan University Journal of Medical Sciences 2024;51(2):272-276
With the increasing application of immune checkpoint inhibitors(ICI)in anti-tumor therapy,ICI related infections are often neglected.Mycobacterium tuberculosis(MTB)is also a common pathogen.We reported a case of ICI related pulmonary tuberculosis from Zhongshan Hospital,Fudan University.Meanwhile,18 cases of ICI related tuberculosis infection were collected through literature search,and the characteristics of ICI related tuberculosis were analyzed to improve the understanding in clinic practice.All the cases were confirmed TB including 15 cases of pulmonary tuberculosis(1 case with complication of intestinal tuberculosis)and 4 cases of extra-pulmonary tuberculosis(1 case of disseminated tuberculosis,bone tuberculosis,tuberculous pericarditis and tuberculous pleurisy,respectively).The chest CT characteristics of pulmonary tuberculosis mainly included centrilobular nodules,ground glass nodules,empty lesions,patchy shadows,consolidation and large infiltration.Eighteen cases started anti-tuberculosis treatment,while 4 cases continued ICI treatment.Three cases suspended ICI(2 cases had remission after reuse)and 11 cases stopped ICI,and 1 case was not mentioned.ICI related tuberculosis may be a direct complication of tumor immunotherapy.It is necessary to screen tuberculosis infection and exclude active tuberculosis before immunotherapy.If there are suspected symptoms such as fever,cough and sputum during ICI treatment,active tuberculosis should be taken into account.
7.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
8.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
9.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
10.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/pathology*
;
Cannabinoid Receptor Agonists/metabolism*
;
Collagen Type I/pharmacology*
;
Collagen Type III/pharmacology*
;
Hydroxyproline/pharmacology*
;
Sodium Chloride/metabolism*
;
Mice, Inbred C57BL
;
Lung/pathology*
;
Cannabinoids/adverse effects*
;
Bleomycin/metabolism*
;
Collagen/metabolism*
;
Inflammation/pathology*
;
RNA, Messenger/metabolism*


Result Analysis
Print
Save
E-mail