1.Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012
Jonduo Marinjho ; Wong Sook-San ; Kapo Nime ; Ominipi Paskalis ; Abdad Mohammad ; Siba Peter ; McKenzie Pamela ; Webby Richard ; Horwood Paul
Western Pacific Surveillance and Response 2013;4(4):11-15
We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11–month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodies were detected in any of the samples. This study demonstrated that avian influenza viruses were not circulating at detectable levels in poultry populations in Papua New Guinea during the sampling period. However, avian influenza remains a significant risk to Papua New Guinea due to the close proximity of countries having previously reported highly pathogenic avian influenza viruses and the low biosecurity precautions associated with the rearing of most poultry populations in the country.
2.Influenza Virus-Derived CD8 T CellEpitopes: Implications for the Development of Universal Influenza Vaccines
Sang-Hyun KIM ; Erica ESPAÑO ; Bill Thaddeus PADASAS ; Ju-Ho SON ; Jihee OH ; Richard J. WEBBY ; Young-Ran LEE ; Chan-Su PARK ; Jeong-Ki KIM
Immune Network 2024;24(3):e19-
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
3.Implementing hospital-based surveillance for severe acute respiratory infections caused by influenza and other respiratory pathogens in New Zealand
Q Sue Huang ; Michael Baker ; Colin McArthur ; Sally Roberts ; Deborah Williamson ; Cameron Grant ; Adrian Trenholme ; Conroy Wong ; Susan Taylor ; Lyndsay LeComte ; Graham Mackereth ; Don Bandaranayake ; Tim Wood ; Ange Bissielo ; Ruth Se ; Nikki Turner ; Nevil Pierse ; Paul Thomas ; Richard Webby ; Diane Gross ; Jazmin Duque ; Mark Thompson ; Marc-Alain Widdowson
Western Pacific Surveillance and Response 2014;5(2):23-30
Recent experience with pandemic influenza A(H1N1)pdm09 highlighted the importance of global surveillance for severe respiratory disease to support pandemic preparedness and seasonal influenza control. Improved surveillance in the southern hemisphere is needed to provide critical data on influenza epidemiology, disease burden, circulating strains and effectiveness of influenza prevention and control measures. Hospital-based surveillance for severe acute respiratory infection (SARI) cases was established in New Zealand on 30 April 2012. The aims were to measure incidence, prevalence, risk factors, clinical spectrum and outcomes for SARI and associated influenza and other respiratory pathogen cases as well as to understand influenza contribution to patients not meeting SARI case definition.All inpatients with suspected respiratory infections who were admitted overnight to the study hospitals were screened daily. If a patient met the World Health Organization’s SARI case definition, a respiratory specimen was tested for influenza and other respiratory pathogens. A case report form captured demographics, history of presenting illness, co-morbidities, disease course and outcome and risk factors. These data were supplemented from electronic clinical records and other linked data sources.Hospital-based SARI surveillance has been implemented and is fully functioning in New Zealand. Active, prospective, continuous, hospital-based SARI surveillance is useful in supporting pandemic preparedness for emerging influenza A(H7N9) virus infections and seasonal influenza prevention and control.