1.Effect of Chai Shao Liujunzi Decoction Combined with Entecavir for the Treatment of Chronic Hepatitis B:An Observation of 30 Cases
Guangjun TIAN ; Wanzhu RUI ; Peiqiong CHEN ; Xiaoling CHI
Journal of Guangzhou University of Traditional Chinese Medicine 2001;0(03):-
0.05).Normalization rate of ALT was higher in the treatment group than that in the control group (P0.05).The rate of HBeAg turning negative in the treatment group after treatment for one year was higher than that in the control group(P
2.Pioglitazone protects cortical neurons from glutamate induced neurotoxicity via inhibiting the JNK pathway
Rui WANG ; Ying JIN ; Enzhi YAN ; Haijuan SUI ; Wanzhu LIU ; Zhimin QI
Chinese Pharmacological Bulletin 2010;26(3):362-367
Aim To investigate whether pioglitazone has protective effect against glutamate induced neurotoxicity in cultured cortical neurons and its possible molecular mechanisms underlying pioglitazone's neuroprotective effects.Methods The cortical neurons were taken from newborn rats and used for experiments 7 days after culture.The neurons were randomly divided into control group;glutamate group; glutamate+piogli-tazone group;glutamate+SP600125 group;SP600125 group.Cell viability was determined by MTT.The morphology change of neurons was observed under a fluorescence microscope with fluorescence dye Hoechst 33258.Immunostaining was used to investigate the expression of phospho-ATF2 in neuronal cells.Western blot was performed to investigate the protein level of phospho-JNK1 and total JNK1.Results Pioglitazone markedly reduced the damage of cortical neurons caused by glutamate.Pioglitazone also significantly inhibited glutamate induced up-regulation of phospho-JNK1 protein level and phospho-ATF2 expression.SP600125, an inhibitor of JNK, antagonized the toxicity induced by glutamate.Conclusions Pioglitazone can protect cultured cortical neurons from glutamate induced damage.The protective effect of pioglitazone appears to be associated with inhibiting the c-Jun N-terminal protein kinase signaling pathway.
3.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.
4.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.