1.Liver biopsy complicated by vaso-vagal episodes.
Ruidan ZHENG ; Richun RAO ; Bifen CHEN
Chinese Journal of Hepatology 2002;10(6):458-458
2.Mechanisms of depressor effect of norepinephrine injected into subnucleus commissuriu of nucleus solitarius tractus in rabbits.
Yi, ZHANG ; Hongyan, LUO ; Shenghong, LIU ; Zhengrong, YI ; Ai, LI ; Xinwu, HU ; Changjin, LIU ; Ming, TANG ; Lieju, LIU ; Yuanlong, SONG ; Linlin, GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(3):263-4, 268
This experiment aimed to investigate the effect of adrenergic system in the subnucleus commissuriu of nucleus solitrius tractus (CNTS) on renal nerve discharges. Norepinephrine (NE) was microinjected into the CNTS of rabbits and mean arterial blood pressure (MAP) and renal nerve discharges (FRND) were synchronously recorded. The results indicated that (1) microinjection of norepinephine into the CNTS of rabbit could significantly attenuate the frequency of renal nerve discharge, and at the same time decrease markedly the mean arterial pressure. (2) Microinjection of 0.3 nmol yohimbin into CNTS had no significant influence on FRND and MAP, but could attenuate and even reverse the effects of NE on FRND and MAP. These results suggest that microinjection of NE into CNTS may activate the alpha-adrenorecptor located in CNTS and secondarily produce a depressor effect by attenuating the activity of periphenal sympathetic nervous system.
Blood Pressure/drug effects
;
Depression, Chemical
;
Kidney/*innervation
;
Microinjections
;
Norepinephrine/*pharmacology
;
Solitary Nucleus/*physiology
;
Sympathetic Nervous System/drug effects
;
Sympathetic Nervous System/*physiopathology
;
Vasomotor System/physiopathology
3.Alterations in pulmonary arterial reactivity during pulmonary arterial hypertension at the early-stage of pulmonary fibrosis in rats.
Xiao-Jie HU ; Xiao-Ling CHEN ; Chao CHEN ; Jie AI ; Jia LI ; Xiao-Jing HAN
Chinese Journal of Applied Physiology 2011;27(1):110-114
OBJECTIVETo explore the alterations in pulmonary arterial reactivity during pulmonary arterial hypertension at the early-stage of pulmonary fibrosis in rats.
METHODSSixty-six male Sprague-Dawley rats were randomly divided into 2 groups: bleomycin (BLM) group and sham group. The rats in BLM group were received single intratracheal instillation of BLM (5 mg/kg), and the rats in sham group received equal volume of 0.9% normal saline (NS). The alterations in pulmonary arterial reactivity were measured by vascular tension detected technique, the pathomorphological changes in the wall of pulmonary arteries were displayed with Hematoxylin-Eosin (HE) staining, the degree of fibrosis in lung was revealed with Masson staining, and the mean pulmonary arterial pressure was detected via a catheter in the pulmonary artery.
RESULTS(1) The contractile response to a- adrenoceptor agonist phenylephrine (PE), of pulmonary arteries both with remaining endothelium and with removing endothelium, from BLM-treated rats , was reduced significantly, compared with sham rats (P both < 0.05). (2) The relaxant response to the endothelially dependent vasodilator acetylcholine (Ach), of pulmonary arteries with remaining endothelium, from BLM-treated rats, was also reduced, compared with sham rats (P < 0.01). (3) In sham rats, the contractile response to (omega) -nitro-L-arginine methyl ester (L-NAME) plus PE, of pulmonary arteries with remaining endothelium, was enhanced, compared with that to PE alone (P < 0.01), while in BLM group, the contractile responses to L-NAME plus PE, of pulmonary arteries with remaining endothelium, was not different from that to PE alone (P > 0.05). (4) In BLM group, vascular endothelial cells lost. (5) In BLM group, the initial stage of fibrogenesis was observed in lungs, and the mean pulmonary arterial pressure increased, compared with that in sham group (P < 0.05).
CONCLUSIONThe abnormal responsibility of pulmonary arteries occurred during pulmonary arterial hypertension at the early-stage of pulmonary fibrosis in rats.
Animals ; Familial Primary Pulmonary Hypertension ; Hypertension, Pulmonary ; complications ; physiopathology ; Male ; Pulmonary Artery ; physiopathology ; Pulmonary Fibrosis ; complications ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Vasomotor System ; physiology
4.Effect of ischemia/hypoxia on mesenteric vasomotor function in spontaneously hypertensive rats and its possible mechanism.
Ming ZHAO ; Xiao-Jiang YU ; Hong-Li ZHANG ; Xue-Yuan BI ; Hao HU ; Wei-Jin ZANG
Acta Physiologica Sinica 2011;63(6):540-548
Hypertension is a common cardiovascular disease and can induce many complications, such as stroke and coronary heart disease. The purpose of the present study was to investigate the effect of ischemia/hypoxia on mesenteric artery vasomotor function in spontaneously hypertensive rats (SHR). Rat mesenteric arterial rings were cultured in modified ischemia-mimetic solution in a hypoxia incubator for a certain time period. Isometric tension changes of isolated mesenteric arterial rings were recorded continuously by a myograph system. The results obtained were as follows: In SHR group, the maximum contractions to KCl and phenylephrine (PE) were increased, and the maximum relaxation to acetylcholine (ACh) was decreased, compared to those in Wistar-Kyoto (WKY) rats group. Compared with SHR group and WKY with acute ischemia/hypoxia (WKY+H) group, SHR with acute ischemia/hypoxia (SHR+H) increased the maximum contractions induced by KCl and PE and inhibited the maximum relaxations by ACh. In SHR+H and SHR groups, the vasodilation induced by ACh was unaffected by N(G)-nitro-L-arginine methylester (L-NAME), whereas in WKY group, the relaxation to ACh was attenuated by L-NAME. CaCl2-induced contraction in depolarized rings in SHR+H group significantly shifted to the left compared with SHR group. In Ca(2+)-free K-H solution, the maximum contractions induced by PE and caffeine were increased in SHR+H group compared to those in WKY+H group; the PE- and caffeine-induced contractions were also enhanced in SHR group versus WKY group; the maximum contraction induced by PE was significantly increased in SHR+H group versus SHR group. These findings suggest that acute ischemia/hypoxia aggravates mesenteric artery dysfunction in SHR. The mechanism may be related to the decreased NO generation and increased sarcoplasmic reticulum Ca(2+) release.
Animals
;
Calcium
;
metabolism
;
Endothelium, Vascular
;
metabolism
;
physiopathology
;
Hypertension
;
physiopathology
;
Hypoxia
;
physiopathology
;
In Vitro Techniques
;
Male
;
Mesenteric Arteries
;
physiopathology
;
Muscle, Smooth, Vascular
;
physiopathology
;
Nitric Oxide
;
biosynthesis
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Vasomotor System
;
physiopathology
5.Alterations in aortic vasomotor function in rats with chronic heart failure and its mechanism.
Hong-Li ZHANG ; Ming ZHAO ; Xi HE ; Hong-Ke JIANG ; Xiao-Jiang YU ; Xin MA ; Wei-Jin ZANG
Acta Physiologica Sinica 2010;62(4):317-324
The aim of the present study was to investigate the alterations in thoracic aortic vasomotor function in rats with chronic heart failure (CHF) post myocardial infarction (MI), and then explored the possible mechanism of pathological changes. Male Sprague-Dawley rats were divided into sham and CHF groups randomly. The CHF model group of rats was generated by ligating the left anterior descending artery. In sham-operated rats the ligation was placed but not tightened. A total of 20 rats underwent either sham-operated (n=8) or surgery for MI (n=12). All sham-operated rats survived the surgical procedure and the post-surgical period, whereas total mortality among MI-rats was 25% (3 out of 12). Only MI-rats with infarct-size >30% of the left ventricle (LV) were included for analysis (8 out of 9). Ten weeks after surgery, rats were anaesthetized for hemodynamic measurements, which contains systolic pressure, diastolic pressure, left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LV+dp/dt(max) and LV-dp/dt(max). After that hearts were rapidly excised and weighed. Myocardial infarct size was determined by triphenyltetrazolium chloride (TTC) staining method. Isolated thoracic artery ring preparations were studied in a wire-myograph. The arterial constrictive responses to KCl, CaCl2, phenylephrine (PE), and caffeine and the arterial diastolic responses to acetylcholine (ACh) were recorded by the Multi Myograph System. To explore the possible mechanism, nitric oxide synthase (NOS) inhibitor N-nitrl-L-arginine methylester (L-NAME) and non-selective cyclooxygenase (COX) inhibitor indomethacin (Indo) were used. The results obtained were as follows: (1) CHF group showed an increased contraction response to KCl (5-100 mmol/L) and PE (1x10(-8)-3x10(-4) mol/L), and a reduced endothelium-dependent relaxation response to ACh (1x10(-12)-1x10(-4) mol/L) compared with those observed in sham group (P<0.01, P<0.05); (2) In the presence of L-NAME (1 mmol/L), the endothelium-dependent cumulative contractions to ACh (1x10(-7)-1x 10(-4) mol/L) was significantly enhanced in CHF group (P<0.05), and this effect was reversed by pretreatment with Indo (10 mumol/L); (3) In CHF group, the vessels incubated with Indo (10 mumol/L) showed an increased vasodilation induced by ACh (1x10(-12)-1x10(-4) mol/L) (P<0.05); (4) In the Ca(2+)-free K-H solution, calcium-dependent contraction curves induced by CaCl2 (1x10(-4)-3x10(-2) mol/L) in CHF group significantly shifted to the left compared with sham group (P<0.05); while the vascular contraction induced by caffeine (30 mmol/L) had no significant changes. These findings suggest that thoracic arteries of rats with CHF have endothelial dysfunction, and the contribution of endothelial dilation and contraction was significantly altered in CHF rats. The mechanism could be partly associated with the increased endothelium-dependent contracting factors by COX pathway, or the increased extracellular Ca(2+) influx through voltage-operated channels, thus leading to elevated vasoconstriction.
Animals
;
Aorta, Thoracic
;
physiopathology
;
Chronic Disease
;
Endothelins
;
metabolism
;
Endothelium, Vascular
;
physiopathology
;
Heart Failure
;
etiology
;
physiopathology
;
Male
;
Myocardial Infarction
;
complications
;
Prostaglandin-Endoperoxide Synthases
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Vasomotor System
;
physiopathology
6.Effects of salvianolic acid B and diammonium glycyrrhizinate on portal pressure in rats.
Hang ZHOU ; Si-Xuan WANG ; Tao ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2010;30(10):1084-1086
OBJECTIVETo study the relaxant effects of glycyrrhizinate and salvianolic acid B on rat portal vein in vitro.
METHODSHealthy female Wistar rats were canalized from hepatic artery, portal vein and hepatic vein in vitro. Remained blood in liver was eliminated with heparinized Krebs-Henseleit solution through hepatic artery, then the liver was isolated under infusing manner. Being constricted with phenylephrine and relaxed with acetylcholine, and infused with glycyrrhizinate or salvianolic acid B, the portal pressures of infused rat livers were consistently monitored by BL-420S physiological experiment system. The median effective concentration (EC50) of the two agents were analyzed with non-linear various slope regression using Prism-4 software.
RESULTSEC50 of glycyrrhizinate in relaxing the phenylephrine-contracted portal was 1.5556 x 10(-9) mol/L, suggesting one of the mechanism of action of diammonium glycyrhizinate for the treatment of portal hypertension was direct relaxation. Salvianolic acid B showed constrictive action on the phenylephrine-retracted portal vein, the EC50 was 1.4639 x 10(-9) mol/L, indicating that its indirect control action was took part in the portal hypertension therapy synergistically.
CONCLUSIONUnder the mode with both controlled-velocity and monitored pressure, glycyrrhizinate showed relaxation and salvianolic acid B showed constriction on portal pressure in vitro.
Animals ; Benzofurans ; pharmacology ; Blood Pressure ; drug effects ; Female ; Glycyrrhizic Acid ; pharmacology ; Hypertension, Portal ; physiopathology ; Phenylephrine ; pharmacology ; Portal Vein ; physiology ; Rats ; Rats, Wistar ; Vasoconstrictor Agents ; pharmacology ; Vasodilator Agents ; pharmacology ; Vasomotor System ; drug effects
7.Changes of vasoactive factors in lung tissue of newborn piglets with persistent pulmonary hypertension and effect of magnesium sulphate.
Fang LIU ; Shi-min ZHAO ; Dan-hua WANG ; Min WEI ; Su-ping ZHANG ; Dan YAO
Chinese Journal of Pediatrics 2003;41(2):139-140
Angiotensins
;
analysis
;
Animals
;
Animals, Newborn
;
Biomarkers
;
analysis
;
Endothelin-1
;
analysis
;
Hypertension, Pulmonary
;
drug therapy
;
metabolism
;
physiopathology
;
Lung
;
chemistry
;
pathology
;
Magnesium Sulfate
;
pharmacology
;
Nitric Oxide Synthase
;
analysis
;
Nitric Oxide Synthase Type II
;
Swine
;
Vasomotor System
;
chemistry
8.K(ATP) channel action in vascular tone regulation: from genetics to diseases.
Wei-Wei SHI ; Yang YANG ; Yun SHI ; Chun JIANG
Acta Physiologica Sinica 2012;64(1):1-13
ATP-sensitive potassium (K(ATP)) channels are widely distributed in vasculatures, and play an important role in the vascular tone regulation. The K(ATP) channels consist of 4 pore-forming inward rectifier K(+) channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR). The major vascular isoform of K(ATP) channels is composed of Kir6.1/SUR2B, although low levels of other subunits are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the K(ATP) channels, while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase K(ATP) channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Furthermore, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular K(ATP) channel regulation under physiological and pathophysiological conditions, and discuss the importance of K(ATP) channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.
ATP-Binding Cassette Transporters
;
genetics
;
physiology
;
Animals
;
Endotoxemia
;
metabolism
;
physiopathology
;
Humans
;
KATP Channels
;
genetics
;
physiology
;
Mice
;
Mice, Transgenic
;
Muscle, Smooth, Vascular
;
metabolism
;
physiology
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
physiology
;
Receptors, Drug
;
genetics
;
physiology
;
Shock, Septic
;
metabolism
;
physiopathology
;
Sulfonylurea Receptors
;
Vasoconstriction
;
physiology
;
Vasodilation
;
physiology
;
Vasomotor System
;
physiology
9.Characteristic changes of vascular tension factors in diabetic arterial occlusion of lower extremities.
Bai-nan CHEN ; Hong-song QIN ; Zheng LIU
Chinese Journal of Integrated Traditional and Western Medicine 2004;24(9):798-800
OBJECTIVETo study the change of vascular tension factors (VTF), including vascular contractile factors as endothelin-1 (ET-1), thromboxane A2 (TXA2) and vascular dilatory factors as nitric oxide (NO), prostacyclin (PGI2), in different stage of peripheral diabetic arterial occlusion (PDAO), and to preliminarily explore the clinical significance of these changes.
METHODSVTF in 40 diabetic patients, 15 of 2nd stage and 25 of 3rd stage, were observed by measuring level of ET-1, NO, TXB2 and 6-keto-PGF1alpha in blood plasma with RIA assay.
RESULTS(1) ET-1 and TXB2 levels in all patients were higher than those in control (P < 0.05 and P < 0.01), those in patients of 3rd stage was higher than those of 2nd stage, showing significant difference (P < 0.05). (2) NO and 6-keto-PGF1alpha levels in all patients was lower than those in control, but showed no significant difference between patients of various stages (P > 0.05).
CONCLUSIONThere are changes of VTF in patients with PDAO, manifesting as increase of vascular contractive factors and decrease of vascular dilative factor. The changes are diffrent in various stages, the vascular contractive and thrombotic factors in patients of 3rd stage are higher than those in patients of 2nd stage, but the injury on vascular dilative factors in the two stages showed insignificant difference.
6-Ketoprostaglandin F1 alpha ; blood ; Aged ; Aged, 80 and over ; Diabetes Mellitus, Type 2 ; metabolism ; Diabetic Angiopathies ; metabolism ; physiopathology ; Endothelin-1 ; blood ; Epoprostenol ; blood ; Female ; Humans ; Lower Extremity ; blood supply ; Male ; Middle Aged ; Nitric Oxide ; blood ; Thromboxane A2 ; blood ; Thromboxane B2 ; blood ; Vasomotor System ; metabolism