1.An Overview Study of Air Pollution in Ulaanbaatar City
Ulziikhutag B ; Enkhjargal G ; Buyantushig B ; Jargalsaikhan G ; Eelin Kh ; Ulziimaa D ; Damdindorj B ; Khurelbaatar N ; Davaalkham D
Mongolian Journal of Health Sciences 2025;85(1):263-266
Background:
According to the World Health Organization (WHO), air pollution was responsible for 8.1 million deaths
globally in 2021, making it the second leading cause of death, including among children under 5 years old. Air pollution
is also linked to a range of diseases such as stroke, chronic obstructive pulmonary disease, lung cancer, and asthma. In
Ulaanbaatar, the capital of Mongolia, the average daily concentration of PM2.5 particles in the air reaches 750 μg/m3
during winter, which is 50 times higher than the WHO’s recommendation, making it one of the most polluted cities in
the world. Air pollution continues to pose a significant public health challenge not only in Mongolia but also in many
countries globally. However, there is a lack of comprehensive research and studies that summarize and review the existing
work in this field.
Aim:
To summarize and review thematic works on air pollution conducted by researchers from Mongolian universities.
Materials and Methods:
A systematic review and analysis were performed on thematic works by researchers who completed their master’s and doctoral degrees in the field of air pollution between 2011 and 2024.
Results:
In terms of the type of master’s and doctoral dissertations, 76.0% (n=19) were master’s theses and 24.0% (n=6)
were doctoral dissertations. Among the total number of works included in the study, 36.0% (n=9) focused on the health
effects of air pollution, while 64.0% (n=16) addressed other related areas. Some studies indicated that PM2.5 levels in
the air between 2011 and 2024 were 1-6 times higher than the Mongolian standard, with the highest levels observed from
November to February and the lowest in July. Additionally, some studies suggested a reduction in PM2.5 levels following
the introduction of improved fuel in Ulaanbaatar. Air pollution was found to increase the risk of respiratory and cardiovascular diseases, as well as cancer, and to contribute to reduced fetal weight.
Conclusion
When examining thematic studies on air pollution conducted by state-owned universities in Mongolia, the
primary focus has been on the composition, concentration, and health impacts of air pollution. Going forward, research
aimed at mitigating air pollution should be driven by collaborative efforts and leadership from universities, with the results being effectively communicated to policymakers.
2.Study results of PM1 and PM10 particulate matter concentrations in Ulaanbaatar city’s household environments using low-cost sensors.
Ulziimaa D ; Jargalsaikhan G ; Ser-Od Kh ; Enkhjargal G ; Myagmarchuluun S ; Gantuya D ; Munkh-Erdene L ; Damdindorj B ; Khurelbaatar N ; Davaalkham D
Mongolian Journal of Health Sciences 2025;88(4):88-91
Background:
According to the World Health Organization (WHO), 99 percent of the world’s population is exposed to air
that exceeds WHO recommendations, with low- and middle-income countries being the most affected. The main causes
of indoor air pollution include human activities such as fuel burning, cooking, cleaning, and smoking; housing characteristics such as walls, floors, ceilings, and furniture; ventilation; and outdoor air pollution.
Aim :
To assess PM1 and PM10 concentrations in 120 selected households in Ulaanbaatar.
Materials and Methods :
Indoor PM1 and PM10 concentrations were measured using Purple Air real-time sensors in
randomly selected Ulaanbaatar households between October 2023 and January 2024. Supplementary data on factors affecting the PM2.5 concentration were collected via questionnaires. Each measurement was taken in 10-minute intervals,
yielding 51,309 data for analysis.
Results :
PM1 concentrations were measured at 55.5±53.2 μg/m³ in gers, 54.9 ± 46.7 μg/m³ in houses, and 31.6±40.1 μg//m³ in apartments (p<0.001) and measuring PM10 concentrations were 110.6±108.6 μg/m³ in gers, 110.6±96.7 μg/m³ in
houses, and 62.2±83.0 μg/m³ in apartments (p<0.001) When considering the concentration of PM1, PM10 by heating
type, PM1 was 55.3±50.1 μg/m³ and PM10 was 110.6±103.0 μg/m³ in households with stoves and furnaces, and PM1
was 31.6±40.1 μg/m³ and PM10 was 62.2±83.0 μg/m³ in households connected to the central heating system (p<0.001).
Regarding the months of measurement, the highest concentration was observed in December 2023, at 77.1±94.1 μg/m³. The highest concentrations for both PM₁ and PM₁₀ were recorded in January 2024, at PM₁: 64.8±55.1 μg/m³, PM₁₀:
131.4±116.0 μg/m³.
Conclusion
1. Indoor PM10 concentrations in residential environments in Ulaanbaatar city were within the MNS4585:2016 Air
Quality Standard, however, it was exceeded the WHO air quality guidelines, indicating an excessive risk of increasing morbidity and mortality among the population.
2. Indoor PM1 and PM10 concentrations in residential environments in Ulaanbaatar varies depending on location, type
of housing, type of heating, and month of measurement.
3.Indoor Particulate Matter Concentration in Households of Darkhan City
Nyamdorj J ; Bolor M ; Maralmaa E ; Yerkyebulan M ; Ser-Od Kh ; Myagmarchuluun S ; Shatar Sh ; Gantuya D ; Gregory C. Gray ; Junfeng Zhang ; Ulziimaa D ; Damdindorj B ; Khurelbaatar N ; Davaalkham D
Mongolian Journal of Health Sciences 2025;85(1):25-29
Background:
A 2018 study on the global burden of disease, accidents, and risk factors reported that 1.6 million peo
ple died in 2017 due to household air pollution. Poor indoor air quality has been highlighted as a contributing factor to
respiratory diseases, cardiovascular conditions, and exacerbation of asthma and allergies. A 2019 study estimated that
long-term exposure to fine particulate matter (PM2.5) with a diameter of 2.5 micrometers or less reduces average life
expectancy by 1.8 years, with more severe effects in highly polluted regions. Additionally, a study by Miller et al. (2007)
found that prolonged exposure to PM2.5 increases the risk of cardiovascular diseases, particularly among women. Direct
measurement devices are highly effective in determining indoor PM2.5 concentrations, identifying sources of pollution,
tracking pollutant dispersion, and monitoring temporal variations. Studies suggest that direct measurement is an accurate,
cost-effective method that provides detailed data suitable for local conditions.
Aim:
To investigate the indoor air quality of houses and apartments in Darkhan city during the winter season using the
Purple Air monitoring device.
Materials and Methods:
A cross-sectional study was conducted with a targeted sample of 128 households in Darkhan
city. The study examined factors such as stove type, type of coal used, annual and daily coal consumption, frequency of
heating, and chimney sealing conditions. To collect data, the Purple Air monitoring device was installed in each house
hold for a month, after which it was retrieved. During retrieval, participants completed a questionnaire. The questionnaire
consisted of 55 questions across 7 pages at the time of device installation and 25 questions across 3 pages at the time of
device retrieval. The collected data was analyzed using SPSS 25.0.
Results:
A total of 128 households in Darkhan city participated in the study. The average duration of residence in the
current home was 9.5 years, with no statistically significant variation. The distribution of housing types was as follows:
traditional Mongolian gers (40.6%), houses (39.1%), and apartments (20.3%). The 24-hour average PM2.5 concentration
was highest in gers (70.9 μg/m³), followed by houses (46.8 μg/m³) and apartments (22.8 μg/m³), with a statistically significant difference (p=0.0001). PM2.5 levels were most variable in gers, followed by houses and then apartments. House
holds using central heating (apartments) had an average 24-hour PM2.5 concentration of 22.8 μg/m³, whereas households
using stoves (gers and houses) had a significantly higher concentration of 59.4 μg/m³ (p=0.0001). However, there was
no statistically significant difference between traditional and improved stoves. Among study participants, 21.4% reported
that someone in their household smoked indoors. Additionally, 86.5% regularly burned incense, candles, or herbs, while
99.2% did not use an air purifier.
Conclusion
The indoor particulate matter concentration in houses and gers in Darkhan was 59.4μг/m3. Variations in
stove types, poor chimney sealing limited space, and frequent gaps and cracks contribute to increased spread of indoor
air pollutants.