1.Optimization of triple plasmids transfection into HEK293 cells mediated by polyethylenimine.
Qiang FU ; Yan LI ; Zhaofen ZHENG ; Aizhong LIU ; Zhenhua YUAN ; Jianqiang PENG ; Jin HE
Journal of Biomedical Engineering 2015;32(1):137-141
In the present study, packaging system composed of pAAV-CMV-GFP, pAAV-RC and pHelper were transfected into human embryonic kidney 293 cells (HEK293 cells) mediated by polyethyleneimine (PEI) to explore an optimal transfection condition. Different total plasmid DNA dosages (1, 2, 3, 4, 5, 6 μg) and different PEI/Plasmid ratios (1:1, 3:1, 5:1, 7:1) were tested with detection of green fluorescence protein (GFP) with ImagePro Plus6. 0 Software. Then transfection efficiency of the optimized transfection system was further observed for different time periods(12, 24, 36, 48, 60, 72 h). The results showed that total plasmid dosage of 4 μg/well with PEI/plasmid ratio of 3 : 1-5 : 1 was an efficient transfection condition. Transfection efficiency-time curve was an S-shaped curve. Transfection efficiency reached a plateau at 60 h after transfection. The optimized conditions for PEI-mediated transfection at the optimal time result in enhanced transfection efficiency of triple plasmid into HEK293 cells.
Green Fluorescent Proteins
;
HEK293 Cells
;
Humans
;
Plasmids
;
Polyethyleneimine
;
Transfection
;
methods
2.Enhancing microRNA transfection to inhibit survivin gene expression and induce apoptosis: could it be mediated by a novel combination of sonoporation and polyethylenimine?
Zhi-Yi CHEN ; Kun LIANG ; Ri-Xiang QIU ; Liang-Ping LUO
Chinese Medical Journal 2011;124(21):3592-3594
Apoptosis is a physiologically essential mechanism of cell and plays an important role in reducing the development and progression of tumors. The appealing strategy for cancer therapy is to target the lesions that induce apoptosis in cancer cells. Survivin, the smallest member of the mammalian inhibitors of the apoptosis protein family, is upregulated in various malignancies to protect cells from apoptosis. Survivin knockdown could induce cancer cell apoptosis and inhibit tumor-angiogenesis. Survivin expression would be silenced by microRNA (miRNA)-mediated RNA interference. However, noninvasive and tissue-specific gene delivery techniques remain absent recently and the utilizations of miRNA expression vectors have been limited by inefficient delivery technique, especially in vivo. On the other hand, safe and promising technologies of gene transfection would be valuable in clinical gene therapy. Successful treatment of gene transfer method would lead to a new and readily available approach in the anticancer research. Sonoporation is an alternative technique of gene delivery that uses ultrasound targeted microbubble destruction to create pores in the cell membrane. Based on our previous studies, in this article, we postulated that the transfection of miRNA could be mediated by the combination of sonoporation and polyethylenimine (PEI) which was one of the most effective poly-cationic gene vectors and enhance the endocytosis of plasmids DNA and hypothesized that the gene silencing and apoptosis induction with miRNA targeting human Survivin would be improved by this novel technique. In our opinion, this novel combination of sonoporation and PEI could enhance targeted gene delivery effectively and might be a feasible, novel candidate for gene therapy.
Genetic Therapy
;
methods
;
Humans
;
Inhibitor of Apoptosis Proteins
;
genetics
;
MicroRNAs
;
genetics
;
Neoplasms
;
therapy
;
Polyethyleneimine
;
chemistry
;
Transfection
;
methods
3.Progress of nanometer vector polyethylenimine applied in gene therapy.
Journal of Biomedical Engineering 2011;28(1):195-198
Polyethylenimine (PEI) is a kind of nanometer nonviral vector frequently applied in gene transfection. It is simple and easy to prepare and to modify and relatively safe compared to viral vectors. In recent years, PEI has been utilized in many research areas for gene delivery to stem cells in vitro or targeted gene delivery to cells in the brain. This review reveals that the cytotoxicity and low transfection efficiency of PEI requires to be improved. However brain-targeted modification indicates the promising prospect of PEI for gene therapy in cerebrovascular diseases.
Genetic Therapy
;
Genetic Vectors
;
Humans
;
Nanostructures
;
chemistry
;
Polyethyleneimine
;
chemistry
;
Stem Cell Transplantation
;
methods
;
Transfection
;
methods
4.Preparation of new lipid-hydroxyapatite-DNA complex and gene transfection reseach in eukaryotic cell.
Bao-Ling HE ; En-Jie SUN ; Dong YANG
Chinese Journal of Biotechnology 2006;22(5):795-799
This work was directed at obtaining a better gene carrier to improve the effects of gene delivery. Neutral liposomes made from cholesterol, lecithin and DOPE by reverse evaporation technique were used for encapsulating DNA-HAP complex which was made from DNA and optimized HAP. The sizes of complexes and the efficiency of encapsulation were detected. The efficiency of transfection into Hela cells was shown by observation of X-gal staining and measurement of transfection efficience. The average size of complexes was 643nm, the average encapsulating efficiency of DNA in microspheres reached 11.67%. These Lipid-Hydroxyapatite-DNA complex (LHD) could be transfected into mammalian cells. The Lipid-Hydroxyapatite-DNA complex prepared by reverse evaporation technique could be applied availably in DNA delivery system, and it gave another thinking to increase the gene transfection of non- viral genetic vector.
DNA
;
administration & dosage
;
Durapatite
;
administration & dosage
;
Genetic Therapy
;
Lipids
;
administration & dosage
;
Transfection
;
methods
5.In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency.
Juan-juan XIANG ; Xin-min NIE ; Jing-qun TANG ; Yan-jin WANG ; Zheng LI ; Kai GAN ; He HUANG ; Wei XIONG ; Xiao-ling LI ; Gui-yuan LI
Chinese Journal of Oncology 2004;26(2):71-74
OBJECTIVETo evaluate the feasibility of using iron oxide nanoparticles as gene vector and the effect of magnetic field on efficiency of transfection.
METHODSIron oxide nanoparticles were prepared by alkaline precipitation of divalent and trivalent iron chloride. The surface of iron oxide nanoparticles was modified by self-assembled poly-L-lysine to form particle complexes (IONP-PLL). Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using IONP-PLL as vector. The effect of magnetic field on efficiency of transfection was determined using Nd-Fe-B permanent magnet.
RESULTSForeign gene could be delivered to various cell lines by IONP-PLL and expressed with high efficiency, but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5 - 10 fold.
CONCLUSIONIONP-PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.
Animals ; COS Cells ; Ferric Compounds ; administration & dosage ; Genetic Vectors ; Magnetics ; Polylysine ; administration & dosage ; Transfection ; methods
6.Gene therapy for hepatocellular carcinoma.
Chinese Journal of Hepatology 2003;11(12):756-756
7.Determination of quercetin metabolism in UGT1A3 cDNA-expressing cells by RP-HPLC.
Yan YAO ; Xia ZHANG ; Yao LIU ; Lu-shan YU ; Hui-di JIANG ; Su ZENG
Journal of Zhejiang University. Medical sciences 2011;40(1):7-11
OBJECTIVETo develop a RP-HPLC method for the determination of quercetin in UGT1A3 cDNA-transfected cells.
METHODSThe lysate of cells transfected with human recombinant uridine 5-diphosphate glucuronosyltransferases UGT1A3 cDNA was co-incubated with quercetin, the reaction was terminated with acetonitrile, and luteolin was used as internal standard. The determination was performed on a C(1) reversed phase column with a mobile phase of methanol-0.1% formic acid (V/V) at a flow rate of 1.0 ml/min. The gradient elution was as follows: 0 - 25 min (30:70-80:20, methanol:0.1% formic acid), > 25-25.5 min (80:20), >25.5-27 min (80:20-30:70), > 27-30 min (30:70). A UV-VIS detector was operated at 368 nm.
RESULTThe standard curve was linear over the concentration range of 5-200 μmol/L (r = 0.9999). The limit of detection was 1.25 μmol/L(S/N ≥ 3), and the limit of quantification was 5 μmol/L (S/N >10, RSD = 6.99%). The method afforded recoveries of 99.1%-103.5%, and precisions for inter- and intra-assay were < 2.5% and < 8%, respectively. In addition, kinetic analysis indicated that the K(m), V(max) and CL(int) (V(max)/K(m)) values for quercetin glucuronide were (62.95 ± 13.16) μ mol/L, (284.50 ± 24.35)nmol*min⁻¹*g⁻¹ and 4.52 ml*min⁻¹*g⁻¹, respectively.
CONCLUSIONThe method established is accurate and simple and suitable for the determination of quercetin in UGT1A3 cDNA-expressed cells.
Cells, Cultured ; Chromatography, High Pressure Liquid ; methods ; Glucuronosyltransferase ; genetics ; Humans ; Quercetin ; analysis ; pharmacokinetics ; Transfection
8.Efficient delivery of siRNA into mouse preimplantation embryos by electroporation.
Bohao CHANG ; Hui PENG ; Jinhai TIAN ; Jianmin SU ; Hengde ZHANG ; Xueyao BAI ; Yong ZHANG
Chinese Journal of Biotechnology 2012;28(5):613-622
We developed a detailed electroporation method to deliver efficiently siRNA into mouse preimplantation embryos. By introducing Cy3 labeled negative control small interfering RNA (siRNA) into mouse preimplantation embryos, we optimized conditions for the electroporation, including the voltage, pulse duration, pulse number, electroporation buffer and an important step to weaken the zona pellucida. Embryonic survival rate, transfection rate and blastocyst development rate were evaluated under the converted fluorescence microscope, by embryos counting and statistical analysis. The best transfection was achieved in opti-MEM under the conditions of 30 V, 1 ms, 3 pulses, and the duration of digestion in tyrode's solution was 10 s. In conclusion, the proposed electroporation approach here is a simple and efficient tool to deliver siRNA for RNA interference (RNAi) into mouse preimplantation embryos.
Animals
;
Blastocyst
;
metabolism
;
Electroporation
;
Female
;
Male
;
Mice
;
RNA Interference
;
RNA, Small Interfering
;
genetics
;
Transfection
;
methods
9.Feasibility of real-time quantitative PCR in assessing the efficiency of gene transfection in vivo.
Journal of Experimental Hematology 2003;11(2):132-136
To explore feasibility of real-time quantitative PCR in assessing efficiency of gene transfection, clonal PCR was employed to analyze efficiency of retroviral-mediated neo gene transfection in primary myoblast, simultaneous real-time PCR were performed for estimation of transfection efficiency; for measuring integrated gene copy number per cell, linear amplification mediated-PCR (LAM-PCR) and retroviral 5'LTR integration analysis also were used. The results showed that: (1) the data from clonal PCR are similar as that from real-time PCR in low efficiency of transfection (< 36%); but in high efficiency of transfection, it is significantly differentiation between clonal PCR and real-time PCR. (2) One copy of transduced gene per cell was observed in retroviral-mediated gene transfection in primary myoblast. It is concluded that real-time PCR can be used to estimate gene transfer vector in vivo, but it is not available for assessing gene transfection in vitro, because high efficiency of transfection could be obtained in most of gene transfection in vitro.
Animals
;
Genetic Vectors
;
genetics
;
Polymerase Chain Reaction
;
methods
;
Retroviridae
;
genetics
;
Sequence Analysis, DNA
;
Transfection
10.Optimizing the operating variables that affect the transfection experiment of antisense oligodeoxyribonucleotide by gas-filled microbubbles.
Ying-zheng ZHAO ; Yu-kun LUO ; Cui-tao LU ; Jing-feng XU ; Xing-guo MEI ; Hu-jun WANG ; Mei ZHANG
Acta Pharmaceutica Sinica 2007;42(12):1323-1326
To optimize the operating variables that affect the transfection of antisense oligodeoxyribonucleotide (AS-ODNs) by insonated gas-filled lipid microbubbles, SF6-filled microbubbles were prepared by sonication-lyophilization method. An AS-ODNs sequence and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of SF6-filled microbubbles. Three levels of mixing speed, different durations of mixing and various delay time before ultrasound were examined, separately. Transfection efficiency was detected by fluorescence microscopy. Transfection results with and without incubation of AS-ODNs and microbubbles before mixing cells were compared. From the results, there is no significant difference between the transinfection efficiency with or without incubation of AS-ODNs and microbubbles before mixing cells. AS-ODNs transfection efficiency showed an increasing trend with mixing speed and mixing duration, but there is a negative relationship with delay time before ultrasound. The optimum parameters for AS-ODNs transfection by SF6-filled microbubbles were found at a mixing speed of 40-50 r x min(-1) for 30-60 s with less than 60 s delay before ultrasound. For a successful transfection, long time of incubation with gene is essential for normal nonviral vectors such as liposomes or cationic lipid-polymer hybrids, because these vectors depend on endocytosis and membrane fusion to realize transfection. Unlike liposomes and cationic lipid-polymer hybrids, gas-filled lipid microbubbles depend on sonorporation effect to realize transfection. Therefore, the incubation of gene and microbubbles before mixing cells may not be necessary. Ultrasound-mediated AS-ODNs transfection enhanced by gas-filled lipid microbubbles represents an effective avenue for gene transfer.
Cell Line, Tumor
;
Green Fluorescent Proteins
;
Humans
;
Microbubbles
;
Oligodeoxyribonucleotides, Antisense
;
genetics
;
Sulfur Hexafluoride
;
Transfection
;
methods
;
Ultrasonics