1.Missed detections of influenza A(H1)pdm09 by real-time RT–PCR assay due to haemagglutinin sequence mutation, December 2017 to March 2018, northern Viet Nam
Phuong Hoang ; Hang Nguyen ; Huong Tran ; Thuy Nguyen ; Anh Nguyen ; Thanh Le ; Cuong Vuong ; Son Nguyen ; Trang Ung ; Mai Le
Western Pacific Surveillance and Response 2019;10(1):32-38
Introduction:
There are two methods of reverse transcription polymerase chain reaction (RT–PCR) that have been the common methods to detect influenza infections: conventional and real-time RT–PCR. From December 2017 to March 2018, several missed diagnoses of influenza A(H1)pdm09 using real-time RT–PCR were reported in northern Viet Nam. This study investigated how these missed detections occurred to determine their effect on the surveillance of influenza.
Methods:
The haemagglutinin (HA) segments of A(H1N1)pdm09 from both real-time RT-PCR positive and negative samples were isolated and sequenced. The primer and probe sets in the HA gene were checked for mismatches, and phylogenetic analyses were performed to determine the molecular epidemiology of these viruses.
Results:
There were 86 positive influenza A samples; 32 were A(H1)pdm09 positive by conventional RT–PCR but were negative by real-time RT–PCR. Sequencing was conducted on 23 influenza (H1N1)pdm09 isolates that were recovered from positive samples. Eight of these were negative for A(H1)pdm09 by real-time RT–PCR. There were two different mismatches in the probe target sites of the HA gene sequences of all isolates (n = 23) with additional mismatches only at position 7 (template binding site) identified for all eight negative real-time RT–PCR isolates. The prime target sites had no mismatches. Phylogenetic analysis of the HA gene showed that both the positive and negative real-time RT–PCR isolates were grouped in clade 6B.1; however, the real-time RT–PCR negative viruses were located in a subgroup that referred to substitution I295V.
Conclusion
Constant monitoring of genetic changes in the circulating influenza A(H1N1)pdm09 viruses is important for maintaining the sensitivity of molecular detection assays.
2.Circulation of human respiratory syncytial virus and new ON1 genotype in northern Viet Nam, 2017–2020
Thi Hong Trang Ung ; Vu Mai Phuong Hoang ; Huy Hoang Nguyen ; Vu Son Nguyen ; Thi Thanh Le ; Le Khanh Hang Nguyen ; Duc Cong Vuong ; Thi Thu Huong Tran ; Thi Hien Nguyen ; Phuong Anh Nguyen ; Mai Quynh Le
Western Pacific Surveillance and Response 2023;14(4):13-21
Objective: Human respiratory syncytial virus (RSV) is a primary cause of paediatric severe acute respiratory infection (SARI) worldwide, especially in developing countries. We investigated the genetic characteristics of RSV in northern Viet Nam to determine the prevalence and distribution of subtypes as well as the diversity and transmission patterns of genotypes.
Methods: In two facilities, from January 2017 to December 2020, 1563 clinical specimens were collected from paediatric patients hospitalized with SARI and tested for RSV. Selected positive samples underwent sequencing analysis targeting the second hypervariable region of the G gene using next-generation sequencing.
Results: The RSV positivity rate was 28.02% (438/1563 samples), and prevalence was highest in children aged <1 year (43.84%; 192/438). Subtype RSV-A accounted for 53.42% (234/438) of cases, RSV-B for 45.89% (201/438), and there was coinfection in 0.68% (3/438). Both subtypes cocirculated and peaked during August–September in each year of the study. Phylogenetic analysis showed that RSV-A samples belonged to the ON1 genotype, which has three subgenotypes: ON1.1, ON1.2 and ON1.3. However, we did not find the 72-nucleotide duplication in the second hypervariable region of the G gene, a characteristic of genotype ON1, in any RSV-A samples. RSV-B samples belonged to genotype BA9.
Discussion: Our results provide additional molecular characterization of RSV infections in Viet Nam. Specially, our study is the first to report the absence of the 72-nucleotide duplication in the G gene of RSV-A genotype ON1 in Viet Nam, which may help in understanding the genetic evolution of RSV and be useful for vaccine development in the future.
3.Occurrence of the Omicron variant of SARS-CoV-2 in northern Viet Nam in early 2022
Trang thi Hong Ung ; Phuong Vu Mai Hoang ; Son Vu Nguyen ; Hang Le Khanh Nguyen ; Phuong thi Kim Nguyen ; Dan Tan Phan ; Thanh Thi Le ; Anh Phuong Nguyen ; Thach Co Nguyen ; Futoshi Hasebe ; Mai thi Quynh Le
Western Pacific Surveillance and Response 2022;13(3):29-33
The Omicron variant caused a surge of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Viet Nam in early 2022, signalling community transmission. We report on active whole-genome sequencing surveillance of positive SARS-CoV-2 samples collected at that time in northern Viet Nam from international arrivals and community clusters. We used an amplicon protocol developed with 14 polymerase chain reaction products and the Illumina iSeq 100 platform. Overall, 213 nasopharyngeal or throat swabs were analysed, of which 172 samples were identified with the Omicron variant. Of these, 80 samples were collected from community cases in February 2022, among which 59 samples were sublineage BA.2 and one sample was the recombinant XE variant. Our results indicated that Omicron had replaced Delta as the dominant variant in a very short period of time and that continuously conducting active whole-genome sequencing surveillance is necessary in monitoring the evolution and genomic diversity of SARS-CoV-2 in Viet Nam.