1.Zuoguiwan Mitigates Oxidative Stress in Rat Model of Hyperthyroidism Due to Kidney-Yin Deficiency via DRD4/NOX4 Pathway
Ling LIN ; Qianming LIANG ; Changsheng DENG ; Li RU ; Zhiyong XU ; Chao LI ; Mingshun SHEN ; Yueming YUAN ; Muzi LI ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):43-51
ObjectiveTo decipher the mechanism by which Zuoguiwan (ZGW) treat hyperthyroidism in rats with kidney-Yin deficiency based on the dopamine receptor D4 (DRD4)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) signaling pathway. MethodsThe rat model of kidney-Yin deficiency was induced by unilateral intramuscular injection of dexamethasone (0.35 mg·kg-1). After successful modeling, the rats were randomized into model, methimazole (positive control, 5 mg·kg-1), low-, medium-, and high-dose (1.85, 3.70, 7.40 g·kg-1, respectively) ZGW, and normal control groups. After 21 days of continuous gavage, the behavioral indexes and body weight changes of rats were evaluated. The pathological changes of the renal tissue were observed by hematoxylin-eosin staining. The serum levels of thyroid hormones [triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH)], renal function indexes [serum creatine (Scr) and blood urea nitrogen (BUN)], energy metabolism markers [cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)], and oxidative stress-related factors [superoxide dismutase (SOD), malondialdehyde (MDA), and NADPH)] were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to analyze the expression of DRD4, NOX4, mitochondrial respiratory chain complex proteins [NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) and cytochrome C oxidase subunit 4 (COX4)], and inflammation-related protein [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), p38 mitogen-activated protein kinase (MAPK)] pathway in the renal tissue. ResultsCompared with the normal group, the model group showed mental malaise, body weight decreases (P<0.01), inflammatory cell infiltration in the renal tissue, a few residual parotid glands in the thyroid, elevations in serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA, and NADPH (P<0.01), down-regulation in protein levels of TSH, SOD, and DRD4 (P<0.05, P<0.01), and up-regulation in expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.01). Compared with the model group, ZGW increased the body weight (P<0.05, P<0.01), reduced the infiltration of renal interstitial inflammatory cells, restored the thyroid structure and follicle size, lowered the serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA and NADPH (P<0.05, P<0.01), up-regulated the expression of TSH, SOD and DRD4 (P<0.05, P<0.01), and down-regulated the expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.05, P<0.01). Moreover, high-dose ZGW outperformed methimazole (P<0.05). ConclusionBy activating DRD4, ZGW can inhibit the expression of NOX4 mediated by the p38 MAPK pathway, reduce oxidative stress and inflammatory response, thereby ameliorating the pathological state of hyperthyroidism due to kidney-Yin deficiency. This study provides new molecular mechanism support for the clinical application of ZGW.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
4.Exploration of a new model for the construction of medical institution formulation platforms from the perspective of industry-university-research collaborative innovation theory
Kana LIN ; Anle SHEN ; Yejian WANG ; Yanqiong WANG ; Hao LI ; Yanfang GUO ; Youjun WANG ; Xinyan SUN
China Pharmacy 2026;37(2):137-141
OBJECTIVE To explore a model for constructing a platform for medical institution formulation and provide insights for promoting their development. METHODS By systematically reviewing the development status and challenges of medical institution preparations in China, and based on the theory of industry-university-research collaborative innovation, the organizational structure, collaborative processes, and safeguard mechanisms of the platform were designed. RESULTS & CONCLUSIONS Medical institution formulations in China mainly faced challenges such as weak research and development (R&D) capacity, uneven quality standards, and blocked transformation pathways. This study established a full-chain, whole- industry collaborative innovation network covering the government, medical institutions, universities/research institutes, pharmaceutical enterprises, and the market, forming a new “government-industry-university-research-application” five-in-one platform model for medical institution formulations. By establishing mechanisms such as multi-entity collaborative cooperation, full- chain intellectual property management, contribution-based benefit distribution, staged risk-sharing, and third-party evaluation, the model clarified the responsibilities and collaborative pathways of all parties. The new model highlights the whole-process transformation of clinical experience-based prescriptions, enabling precise alignment between clinical needs and technological R&D, as well as between preparation achievements and industrial transformation. While breaking down the barriers of traditional platform construction, it effectively achieves optimal resource allocation and complementary advantages, addresses problems emerging in the development of medical institution preparations, and provides reference value for the formulation of relevant systems.
5.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
6.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
7.Collection, storage and utilization of lung transplant tissue samples
Yixing LI ; Xue SHI ; Hongyi WANG ; Runyi TAO ; Ye SUN ; Ailing SU ; Liyan TONG ; Jinteng FENG ; Yanpeng ZHANG ; Shuo LI ; Yawen WANG ; Guangjian ZHANG
Organ Transplantation 2025;16(1):147-155
After continuous development and improvement, lung transplantation has become the preferred means to treat a variety of benign end-stage lung diseases. However, the field of lung transplantation still faces many challenges, including shortage of donor resources, preservation and maintenance of donor lungs, and postoperative complications. Lung tissue samples removed after lung transplantation are excellent clinical resources for the study of benign end-stage lung disease and perioperative complications of lung transplantation. However, at present, the collection, storage and utilization of tissue samples after lung transplantation are limited to a single study, and unified technical specifications have not been formed. Based on the construction plan of the biobank for lung transplantation in the First Affiliated Hospital of Xi'an Jiaotong University, this study reviewed the practical experience in the collection, storage and utilization of lung transplant tissue samples in the aspects of ethical review, staffing, collection process, storage method, quality control and efficient utilization, in order to provide references for lung transplant related research.
8.Analysis of pediatric pre-prescription review orders based on PCNE classification system
Anle SHEN ; Peiqi WANG ; Tao XU ; Jia LUO ; Xuexian WANG ; Shunguo ZHANG ; Zhiling LI
China Pharmacy 2025;36(3):351-355
OBJECTIVE To provide reference for improving the pre-prescription review system and reducing the occurrence of medication error by analyzing the drug-related problems (DRPs) in the pre-prescription review orders of pediatric outpatient clinics using the Pharmaceutical Care Network Europe (PCNE) classification system. METHODS The data of pre-prescription review orders were retrospectively collected from outpatient department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine from July 2022 to June 2023; DRPs in the pre-prescription review orders were classified and summarized by using the PCNE classification system (version 9.1), and then analyzed in terms of types and causes of issues, and the acceptance of interventions. RESULTS A total of 66 017 DRPs orders were included, involving 41 165 patients. The proportion of DRPs orders in children aged ≤5 years old was the highest (58.25%), followed by children aged 6-12 years old (33.52%); the department with the highest proportion of DRPs was internal medicine of pediatrics department (71.41%); the department with the highest incidence of DRPs was thoracic surgery department (9.73%); top three drug categories of DRPs orders were systemic anti- infective drugs (25.26%), Chinese patent medicines (24.74%) and respiratory drugs (22.38%). Referring to PCNE classification system, the types of DRPs mainly focused on treatment safety (64.86%); the reasons of DRPs orders mainly focused on dose selection (82.09%), of which 41.26% were due to excessive drug dosage; 92.13% of interventions could be accepted and fully executed by doctors. CONCLUSIONS DRPs orders identified by the pre-prescription review system can be effectively analyzed by using PCNE classification system. Pharmacists should focus on medication use in children aged ≤5 years old, update and develop personalized prescription review rules timely, and meet the rational needs of clinical medication for children.
9.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
10.Health literacy prediction models based on machine learning methods: a scoping review
PAN Xiang ; TONG Yingge ; LI Yixuan ; NI Ke ; CHENG Wenqian ; XIN Mengyu ; HU Yuying
Journal of Preventive Medicine 2025;37(2):148-153
Objective:
To conduct a scoping review on the types, construction methods and predictive performance of health literacy prediction models based on machine learning methods, so as to provide the reference for the improvement and application of such models.
Methods:
Publications on health literacy prediction models conducted using machine learning methods were retrieved from CNKI, Wanfang Data, VIP, PubMed and Web of Science from inception to May 1, 2024. The quality of literature was assessed using the Prediction Model Risk of Bias ASsessment Tool. Basic characteristics, modeling methods, data sources, missing value handling, predictors and predictive performance were reviewed.
Results:
A total of 524 publications were retrieved, and 22 publications between 2007 and 2024 were finally enrolled. Totally 48 health literacy prediction models were involved, and 25 had a high risk of bias (52.08%), with major issues focusing on missing value handling, predictor selection and model evaluation methods. Modeling methods included regression models, tree-based machine learning methods, support vector machines and neural network models. Predictors primarily encompassed factors at four aspects: individual, interpersonal, organizational and society/policy aspects, with age, educational level, economic status, health status and internet use appearing frequently. Internal validation was conducted in 14 publications, and external validation was conducted in 4 publications. Forty-two models reported the areas under the receiver operating characteristic curve, which ranged from 0.52 to 0.983, indicating good discrimination.
Conclusion
Health literacy prediction models based on machine learning methods perform well, but have deficiencies in risk of bias, data processing and validation.


Result Analysis
Print
Save
E-mail