1.Anti-proliferative effect of artesunate on MDA-MB-231 cell and its mechanisms
Xiaobo ZHAO ; Tianyong XING ; Kainan WU
Journal of Endocrine Surgery 2011;05(3):155-157,175
Objective To study the effects of artesunate(ART)on estrogen receptor negative breast cancer cell line MDA-MB-231 and its mechanisms.Methods Treated with ART for 3 days,MDA-MB-231 cells proliferation was examined by MTT assay.The morphological and uhrastructural changes of MDA-MB-231 cells were observed under microscope and electronic microscope.Immunocytochemistry was used to detect the expression of Bax,mn23,Bcl-2,and P21 WAFl/CIPl.Results ART treatment led to a dose dependent inhibition of MDA-MB-231 cells.ART could change the morphology and ultrastructure of MDA-MB-231 cens.After treatment with ART(2μmol/L)for 72 hours,immunocytochemical staining showed that the expression of Bax,nm23,and P21WAF1/CIP1 was upregulated in comparison to the control group(P<0.05)while the expression of Bcl-2 in MDA-MB-231 cells didn't have a significant change(P>0.05).Conclusions ART shows an anti-proliferative effect on MDA-MB-231 cells.The mechanisms may be related to upregnlation of Bax,nm23 and P21WAF1/CIP1 expression.
2.Mechanism of tissue-engineered bone recruiting endogenous mesenchymal stem cells towards bone regeneration
Xiaolong YIN ; Tianyong HOU ; Yanzhu LU ; Zhilin LI ; Junchao XING ; Aijun YANG ; Jianzhong XU
Chinese Journal of Trauma 2018;34(4):362-369
Objective To investigate the mechanism of implanted tissue-engineered bone (TEB)recruiting endogenous mesenchymal stem cells (BMSCs) towards bone regeneration after traumatic bone defect.Methods In vivo experiments:2 mm of diaphysis and periosteum were removed from the middle of the femoral shaft in 8 week old FVB/N mice to form a large segment of bone defect.Demineralized bone matrix (DBM) and TEB were implanted into the defect area and fixated.All mice were randomly divided into DBM group (n =18) and TEB group (n =18).The results were observed 24 hours after implantation:(1) flow cytometry was used to evaluate the number of mobilized host BMSCs into the blood;(2) non-invasive bioluminescent imaging was used to observe the ability of two groups in recruiting mouse bone marrow derived mesenchymal stem cells (mBMSCs) in peripheral blood to the defect area;(3) ELISA was used to evaluate the stromal cell-derived factor 1 (SDF-1) content in peripheral blood of two groups.In vitro experiments:(1) transwell assay was conducted to evaluate the ability of SDF-1 (100 ng/ml) in promoting the migration of human bone marrow derived mesenchymal stem cells (hBMSCs).SDF-1/C-X-C motif chemokine receptor-4 (CXCR4) pathway was blocked by the selective CXCR4 antagonist Plerixafor (AMD3100).The experimental groups were divided into control group,SDF-1 group,and SDF-1 + AMD3100 group.(2) The co-culture system of human umbilical vein endothelial cells (hUVECs) and hBMSCs was established,and cells were stimulated by SDF-1.The experimental groups were divided into hBMSCs group,hBMSCs + hUVECs group,and hBMSCs + hUVECs (AMD3100 pretreatment) group.Transwell assays were used to compare the migration of hBMSCs in each group.ELISA was used to detect the concentration of hepatocyte growth factor (HGF) in the co-culture supernatant.(3) In vitro cultured hUVECs were stimulated by SDF-1 and SDF-1/CXCR4 pathway was antagonized by AMD3100.The experimental groups were divided into control group,SDF-1 group,and SDF-1 + AMD3100 group.Quantitative real-time polymerase chain reaction (qRT PCR) was used to evaluate the expression of HGF in each group.Results In vivo experiments:24 h after transplantation,the number of BMSCs and SDF-1 concentration in the TEB group were significantly highcr than those in the DBM group (P < 0.05).The number of recruited mBMSCs into the circulation in the TEB group was larger than that in the DBM group (P< 0.01).In vitro experiments:(1) compared with the control group and the SDF-1 + AMD3100 group,the SDF-1 group significantly enhanced the migration ability of hBMSCs in Transwell migration experiments (P < 0.01);(2) compared with the hBMSCs group and the hBMSCs + hUVECs (AMD3100 pretreatment) group,the number of migrated cells and HGF concentration in the hBMSCs + hUVEC group significantly increased (P < 0.01),but there were no significant differences between the hBMSCs group and the hBMSCs + hUVECs (AMD3100 Pretreatment) group (P >0.05);(3) qRT-PCR showed that the expression of HGF was significantly increased in the SDF-1 group compared with the control group (P < 0.05).After antagonizing SDF-1/CXCR4,HGF expression in the SDF-1 + AMD3100 group was significantly lower than that in the SDF-1 group.Conclusions TEB transplantation in traumatic bone defect can significantly increase the concentration of chemokine SDF-1 in vivo and effectively promote the mobilization of endogenous MSCs and recruitment of circulating MSCs.SDF-1 not only directly promotes the migration of hBMSCs through SDF-1/CXCR4 pathway,but also up-regulates the expression and secretion of HGF in vascular cells to further amplify the chemotactic effect of SDF-1 on hBMSCs.
3.Expert consensus for the clinical application of autologous bone marrow enrichment technique for bone repair (version 2023)
Junchao XING ; Long BI ; Li CHEN ; Shiwu DONG ; Liangbin GAO ; Tianyong HOU ; Zhiyong HOU ; Wei HUANG ; Huiyong JIN ; Yan LI ; Zhonghai LI ; Peng LIU ; Ximing LIU ; Fei LUO ; Feng MA ; Jie SHEN ; Jinlin SONG ; Peifu TANG ; Xinbao WU ; Baoshan XU ; Jianzhong XU ; Yongqing XU ; Bin YAN ; Peng YANG ; Qing YE ; Guoyong YIN ; Tengbo YU ; Jiancheng ZENG ; Changqing ZHANG ; Yingze ZHANG ; Zehua ZHANG ; Feng ZHAO ; Yue ZHOU ; Yun ZHU ; Jun ZOU
Chinese Journal of Trauma 2023;39(1):10-22
Bone defects caused by different causes such as trauma, severe bone infection and other factors are common in clinic and difficult to treat. Usually, bone substitutes are required for repair. Current bone grafting materials used clinically include autologous bones, allogeneic bones, xenografts, and synthetic materials, etc. Other than autologous bones, the major hurdles of rest bone grafts have various degrees of poor biological activity and lack of active ingredients to provide osteogenic impetus. Bone marrow contains various components such as stem cells and bioactive factors, which are contributive to osteogenesis. In response, the technique of bone marrow enrichment, based on the efficient utilization of components within bone marrow, has been risen, aiming to extract osteogenic cells and factors from bone marrow of patients and incorporate them into 3D scaffolds for fabricating bone grafts with high osteoinductivity. However, the scientific guidance and application specification are lacked with regard to the clinical scope, approach, safety and effectiveness. In this context, under the organization of Chinese Orthopedic Association, the Expert consensus for the clinical application of autologous bone marrow enrichment technique for bone repair ( version 2023) is formulated based on the evidence-based medicine. The consensus covers the topics of the characteristics, range of application, safety and application notes of the technique of autologous bone marrow enrichment and proposes corresponding recommendations, hoping to provide better guidance for clinical practice of the technique.