1.Role and treatment strategy of hypoxia in the pathogenesis of multiple myeloma
Weiyuan WANG ; Dongmei GUO ; Tianjie HAN ; Qingliang TENG
Journal of International Oncology 2016;43(7):552-554
Hypoxia environment plays an important role in the pathogenesis of multiple myeloma such as stimulating angiogenesis,increasing bone destructiong,epithelial-mesenchymal transition and drug resis-tance.Thus,there are many therapeutic strategies targeting the hypoxic environment of multiple myeloma,such as hypoxia-activated prodrug and molecular targeting inhibitors.Targeting the hypoxic environment is a promis-ing therapy for multiple myeloma in the future.
2.Role of PI3K/Akt/eNOS signaling pathway in inhibitory effects of puerarin on ox-LDL-induced TF expression in vascular endothelial cells
Huafei DENG ; Jian LI ; Qin ZHOU ; Yulin TAN ; Ming XIE ; Tianjie ZHANG ; Ying HAN ; Wenlong ZHANG
Chinese Journal of Pathophysiology 2017;33(7):1214-1218
AIM: To explore the role of phosphatidylinositiol 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathways in the inhibitory effects of puerarin on oxidized low-density lipoprotein (ox-LDL)-induced tissue factor (TF) expression in vascular endothelial cells.METHODS: The mRNA expression of TF was detected by real-time fluorescent quantitative PCR.The protein levels of TF and Akt was determined by Western blot.The content of the nitric oxide (NO) was measured by nitrate reduction method.RESULTS: Compared with control group, incubating endothelial cells with ox-LDL significantly induced TF expression at mRNA and protein levels and the dephosphorylation of Akt protein, and decreased NO production.Incubation of the endothelial cells with puerarin for 1 h and then treatment of the cells with ox-LDL decreased the TF expression at mRNA and protein levels, increased Akt protein phosphorylation and intracellular NO content.Co-incubation of the endothelial cells with PI3K inhibitor LY294002 and puerarin for 1 h and then treatment of the cells with ox-LDL augmented the TF expression at mRNA and protein levels and the Akt protein dephosphorylation, and decreased NO production.Co-incubation of the endothelial cells with eNOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and puerarin significantly decreased the inhibitory effect of puerarin on ox-LDL-induced TF expression at mRNA and protein levels in the endothelial cells, and reduced Akt protein phosphorylation and NO production.CONCLUSION: Puerarin inhibits ox-LDL-induced TF expression at mRNA and protein levels in the human umbilical vein endothelial cells via activation of PI3K/Akt/eNOS signaling pathway.
3. Research progress of anesthesia-related neural network in depth of anesthesia monitoring
Jiahui DING ; Yu ZHOU ; Tianjie YUAN ; Jiahui DING ; Yu ZHOU ; Tianjie YUAN ; Junming XIA ; Wenxian LI ; Yuan HAN
Chinese Journal of Clinical Pharmacology and Therapeutics 2022;27(12):1400-1407
Improper control of depth of anesthesia is not only detrimental to the rapid and stable recovery of anesthesia, but also affects the postoperative outcome of patients. Therefore, accurate control of anesthesia depth is an urgent clinical and scientific problem in the field of anesthesiology. At present, different algorithm models derived from electroencephalogram (EEG) signals are used to monitor the depth of anesthesia, but they cannot meet the requirements of anesthesiologists to accurately evaluate the depth of anesthesia. In recent years, the research on the mechanism and modulation of anesthesia-related neural network suggests that it has potential value as a method to monitor depth of anesthesia. Anesthesia-related neural networks mainly include sleep-wake circuit, thalamic-cortical circuit and corticocortical network. A thorough understanding of the neural network involved in the loss of consciousness caused by anesthesia will guide the depth of anesthesia monitoring more accurately and provide possibility for improving the quality of clinical anesthesia resuscitation.
4.Interaction between wheat translationally controlled tumor protein TCTP and SNF1-related protein kinase SnRK1.
Nan MA ; Jinzhu QIAO ; Wenqian TANG ; Tianjie SUN ; Na LIU ; Yan CHEN ; Xingtong LU ; Shengfang HAN ; Dongmei WANG
Chinese Journal of Biotechnology 2019;35(9):1686-1697
Translationally controlled tumor proteins (TCTP) and SNF1- related protein kinase (SnRK1) are conserved and widely present in eukaryotic cells. TCTP regulates cell division, plant growth and development, and mediates plant resistance against pathogen infection. SnRK1 participates in a range of physiological processes including sugar metabolism and resistance to abiotic and biotic stresses. Previous work in our laboratory demonstrated that wheat TCTP can respond to Puccinia triticina infection and induce host defense responses. In order to further investigate the mechanism of TaTCTP in wheat resistance to Puccinia triticina infection, we used TAP (tandem affinity purification) and mass spectrometry to screen the potential interactants of TaTCTP. A SNF1- related protein kinase (SnRK1) was identified as a potential interacting protein of TaTCTP. The results of yeast two-hybrid assay showed that TCTP could interact with SnRK1 in yeast, and the yeast carrying TCTP and SnRK1 could grow on SD/-Leu/-Trp/-His/-Ade (SD/-LWHA) medium. The fluorescence signal of the interaction between TCTP and SnRK1 was found to be distributed in the cytoplasm in the Bi-fluorescense complementation experiment. Co-IP experiments further showed that TCTP and SnRK1 could interact in plant cells. This study lays an important foundation for further studying the mechanism of TaTCTP in the interaction between wheat and Puccinia triticina, and it play a great influence on further improving the molecular mechanism of wheat resistant to Puccinia triticina.
Basidiomycota
;
Humans
;
Neoplasms
;
Protein Biosynthesis
;
Protein-Serine-Threonine Kinases
;
Triticum
5.Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.
Yi YANG ; Han WU ; Xiangjin KANG ; Yanhui LIANG ; Ting LAN ; Tianjie LI ; Tao TAN ; Jiangyun PENG ; Quanjun ZHANG ; Geng AN ; Yali LIU ; Qian YU ; Zhenglai MA ; Ying LIAN ; Boon Seng SOH ; Qingfeng CHEN ; Ping LIU ; Yaoyong CHEN ; Xiaofang SUN ; Rong LI ; Xiumei ZHEN ; Ping LIU ; Yang YU ; Xiaoping LI ; Yong FAN
Protein & Cell 2018;9(3):283-297
Mitochondrial diseases are maternally inherited heterogeneous disorders that are primarily caused by mitochondrial DNA (mtDNA) mutations. Depending on the ratio of mutant to wild-type mtDNA, known as heteroplasmy, mitochondrial defects can result in a wide spectrum of clinical manifestations. Mitochondria-targeted endonucleases provide an alternative avenue for treating mitochondrial disorders via targeted destruction of the mutant mtDNA and induction of heteroplasmic shifting. Here, we generated mitochondrial disease patient-specific induced pluripotent stem cells (MiPSCs) that harbored a high proportion of m.3243A>G mtDNA mutations and caused mitochondrial encephalomyopathy and stroke-like episodes (MELAS). We engineered mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) and successfully eliminated the m.3243A>G mutation in MiPSCs. Off-target mutagenesis was not detected in the targeted MiPSC clones. Utilizing a dual fluorescence iPSC reporter cell line expressing a 3243G mutant mtDNA sequence in the nuclear genome, mitoTALENs displayed a significantly limited ability to target the nuclear genome compared with nuclear-localized TALENs. Moreover, genetically rescued MiPSCs displayed normal mitochondrial respiration and energy production. Moreover, neuronal progenitor cells differentiated from the rescued MiPSCs also demonstrated normal metabolic profiles. Furthermore, we successfully achieved reduction in the human m.3243A>G mtDNA mutation in porcine oocytes via injection of mitoTALEN mRNA. Our study shows the great potential for using mitoTALENs for specific targeting of mutant mtDNA both in iPSCs and mammalian oocytes, which not only provides a new avenue for studying mitochondrial biology and disease but also suggests a potential therapeutic approach for the treatment of mitochondrial disease, as well as the prevention of germline transmission of mutant mtDNA.
Animals
;
DNA, Mitochondrial
;
genetics
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
MELAS Syndrome
;
genetics
;
Male
;
Mice
;
Microsatellite Repeats
;
genetics
;
Mitochondria
;
genetics
;
metabolism
;
Mutation
;
genetics