1.Effects of pH and oxygen supply on production of 2,3-butanediol from biodiesel-derived glycerol by Bacillus amyloliquefaciens.
Taowei YANG ; Zhiming RAO ; Xian ZHANG ; Meijuan XU ; Zhenghong XU
Chinese Journal of Biotechnology 2013;29(12):1860-1864
Bacillus amyloliquefaciens B10-127 was used to produce 2,3-butanediol (2,3-BD) from residual glycerol obtained from biodiesel synthesis. Important variables for 2,3-BD fermentation, pH and dissolved oxygen, were studied. When pH was maintained constant, the yield of 2,3-BD was inhibited. The highest 2,3-BD yields were achieved by fermentation without any pH control with an optimized initial pH 6.5. Batch fermentative production of 2,3-BD by B. amyloliquefaciens was investigated using various oxygen supply methods by changing agitation speed. Based on the analysis of three kinetic parameters including specific cell growth rate (micro), specific glucose consumption rate (q(s)) and specific 2,3-BD formation rate (q(p)), a three-stage agitation speed control strategy was proposed, aimed at achieving high concentration, high yield and high productivity of 2,3-BD. Maximum concentration of 2,3-BD reached 38.1 g/L, with the productivity of 1.06 g/(L x h), which were 14.8% and 63.1% over the best results from constant agitation speeds. In a pulse fed-batch fermentation, 2,3-BD concentration and productivity were significantly improved to 71.2 g/L and 0.99 g/(L x h), respectively. To our knowledge, these results were the highest for 2,3-BD production from biodiesel-derived glycerol.
Bacillus
;
classification
;
metabolism
;
Biofuels
;
analysis
;
Bioreactors
;
Butylene Glycols
;
metabolism
;
Fermentation
;
Glycerol
;
metabolism
;
Hydrogen-Ion Concentration
;
Industrial Microbiology
;
Oxygen
;
analysis
2.Contrast-enhanced Ultrasound Guided Percutaneous Puncture Injecting for Hemostatic Control of Active Bleeding of Closed Renal Trauma: An Experimental Study
Qing WANG ; Shanshan WANG ; Taowei YANG ; Jingling HE ; Shasha WANG ; Yekuo LI
Chinese Journal of Medical Imaging 2017;25(3):161-164
Purpose Contrast-enhanced ultrasound (CEUS) guided percutaneous puncture injection of hemostatic agents or biological glue is good for the control of closed renal trauma,but there are also some shortcomings.This study aims to explore the effect of CEUS guided percutaneous puncture injection of hemostatic agent and xanthan gum on the control of closed renal trauma hemorrhage.Materials and Methods Sixteen healthy white rabbits were established closed renal trauma models of active bleeding,and were randomly divided into two groups,puncture and laparotomy group.The puncture group was treated with CEUS guided percutaneous injection of snake venom enzyme and biological glue into the active renal hemorrhage.The laparotomy group was treated with traditional surgical suture.The therapeutic effect of two groups was evaluated after operation.The treatment time was recorded,and the renal function was measured every week after the operation.The pathological examination of the wound tissue was performed 1 month after operation.Results Two groups were successful hemostasis.The operation time of puncture group and open group was (179 ± 30) s and (298 ± 30) s,respectively,and the difference was statistically significant (P<0.05).After operation,the serum creatinine of the puncture group was lower than that of the laparotomy group,and the difference was statistically significant (P<0.05).The recovery of renal function of the puncture group was faster than that of the laparotomy group,and the renal wound healing was better than that of the laparotomy group.Conclusion The effect of CEUS guided percutaneous puncture injection of snake venom enzyme combined with biological glue in the treatment of closed renal trauma hemorrhage is good,which is a new method worth recommending for easy operation,small damage and quick recovery.
3.Whole-cell biotransformation for simultaneous synthesis of L-2-aminobutyric acid and D-gluconic acid in recombinant Escherichia coli.
Caizhe ZHANG ; Taowei YANG ; Junping ZHOU ; Junxian ZHENG ; Meijuan XU ; Xian ZHANG ; Zhiming RAO
Chinese Journal of Biotechnology 2017;33(12):2028-2034
A whole-cell catalyst using Escherichia coli BL21(DE3) as a host, expressing L- threonine dehydratase from Escherichia coli, and co-expressing leucine dehydrogenase from Bacillus cereus and glucose dehydrogenase from Bacillus subtilis for cofactor regeneration, was constructed and used for one-pot production of L-2-aminobutyric acid (L-ABA) and D- gluconic acid from L-threonine and D-glucose. We used shake-flask culture to study the whole-cell catalytic condition including temperature, pH, proper permeabilization of cells and optimal wet cells amount. Moreover, the whole-cell catalyst was cultured in 5-L fermentor by fed-batch fermentation, and 164 g/L L-threonine and 248 g/L D-glucose were converted to 141.6 g/L L-ABA and 269.4 g/L D-gluconic acid. The whole-cell catalyst is promising to fulfill industrial requirements for L-ABA and D-gluconic acid.
4.Effect of key notes of TCA cycle on L-glutamate production.
Zhina QIAO ; Meijuan XU ; Mengfei LONG ; Taowei YANG ; Xian ZHANG ; Nakanishi HIDEKI ; Zhiming RAO
Chinese Journal of Biotechnology 2020;36(10):2113-2125
Glutamic acid is an important amino acid with wide range of applications and huge market demand. Therefore, by performing transcriptome sequencing and re-sequencing analysis on Corynebacterium glutamicum E01 and high glutamate-producing strain C. glutamicum G01, we identified and selected genes with significant differences in transcription and gene levels in the central metabolic pathway that may have greatly influenced glutamate synthesis and further increased glutamic acid yield. The oxaloacetate node and α-ketoglutarate node play an important role in glutamate synthesis. The oxaloacetate node and α-ketoglutarate node were studied to explore effect on glutamate production. Based on the integrated strain constructed from the above experimental results, the growth rate in a 5-L fermenter was slightly lower than that of the original strain, but the glutamic acid yield after 48 h reached (136.1±5.53) g/L, higher than the original strain (93.53±4.52) g/L, an increase by 45.5%; sugar-acid conversion rate reached 58.9%, an increase of 13.7% compared to 45.2% of the original strain. The application of the above experimental strategy improved the glutamic acid yield and the sugar-acid conversion rate, and provided a theoretical basis for the metabolic engineering of Corynebacterium glutamicum.
Citric Acid Cycle
;
Corynebacterium glutamicum/metabolism*
;
Glutamic Acid/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
5.Efficient cascade biosynthesis of (S)-2-hydroxybutyric acid.
Lingzhi TIAN ; Junping ZHOU ; Taowei YANG ; Xian ZHANG ; Minglong SHAO ; Meijuan XU ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(12):4231-4242
2-Hydroxybutyric acid (2-HBA) is an important intermediate for synthesizing biodegradable materials and various medicines. Chemically synthesized racemized 2-HBA requires deracemization to obtain optically pure enantiomers for industrial application. In this study, we designed a cascade biosynthesis system in Escherichia coli BL21 by coexpressing L-threonine deaminase (TD), NAD-dependent L-lactate dehydrogenase (LDH) and formate dehydrogenase (FDH) for production of optically pure (S)-2-HBA from bulk chemical L-threonine (L-Thr). To coordinate the production rate and the consumption rate of the intermediate 2-oxobutyric acid in the multi-enzyme cascade catalytic reactions, we explored promoter engineering to regulate the expression levels of TD and FDH, and developed a recombinant strain P21285FDH-T7V7827 with a tunable system to achieve a coordinated multi-enzyme expression. The recombinant strain P21285FDH-T7V7827 was able to efficiently produce (S)-2-HBA with the highest titer of 143 g/L and a molar yield of 97% achieved within 16 hours. This titer was approximately 1.83 times than that of the highest yield reported to date, showing great potential for industrial application. Our results indicated that constructing a multi-enzyme-coordinated expression system in a single cell significantly contributed to the biosynthesis of hydroxyl acids.
Escherichia coli/genetics*
;
Formate Dehydrogenases
;
Hydroxybutyrates
;
Threonine Dehydratase
6.Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate.
Jiafeng LIU ; Zhina QIAO ; Youxi ZHAO ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3273-3289
L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.
Glutamic Acid
;
Corynebacterium glutamicum/genetics*
;
Ketoglutaric Acids
;
Metabolic Engineering
;
Alanine
7.Synthesis of L-2-aminobutyric acid by leucine dehydrogenase coupling with an NADH regeneration system.
Likun ZHANG ; Yanming XIAO ; Weihua YANG ; Chao HUA ; Yun WANG ; Jingya LI ; Taowei YANG
Chinese Journal of Biotechnology 2020;36(5):992-1001
In this study, Escherichia coli BL21 (DE3) was used as the host to construct 2 recombinant E. coli strains that co-expressed leucine dehydrogenase (LDH, Bacillus cereus)/formate dehydrogenase (FDH, Ancylobacter aquaticus), or leucine dehydrogenase (LDH, Bacillus cereus)/alcohol dehydrogenase (ADH, Rhodococcus), respectively. L-2-aminobutyric acid was then synthesized by L-threonine deaminase (L-TD) with LDH-FDH or LDH-ADH by coupling with two different NADH regeneration systems. LDH-FDH process and LDH-ADH process were optimized and compared with each other. The optimum reaction pH of LDH-FDH process was 7.5, and the optimum reaction temperature was 35 °C. After 28 h, the concentration of L-2-aminobutyric acid was 161.8 g/L with a yield of 97%, when adding L-threonine in batches for controlling 2-ketobutyric acid concentration less than 15 g/L and using 50 g/L ammonium formate, 0.3 g/L NAD+, 10% LDH-FDH crude enzyme solution (V/V) and 7 500 U/L L-TD. The optimum reaction pH of LDH-ADH process was 8.0, and the optimum reaction temperature was 35 °C. After 24 h, the concentration of L-2-aminobutyric acid was 119.6 g/L with a yield of 98%, when adding L-threonine and isopropanol (1.2 times of L-threonine) in batches for controlling 2-ketobutyric acid concentration less than 15 g/L, removing acetone in time and using 0.3 g/L NAD⁺, 10% LDH-ADH crude enzyme solution (V/V) and 7 500 U/L L-TD. The process and results used in this paper provide a reference for the industrialization of L-2-aminobutyric acid.
Aminobutyrates
;
metabolism
;
Escherichia coli
;
genetics
;
Formate Dehydrogenases
;
metabolism
;
Leucine Dehydrogenase
;
metabolism
;
NAD
;
metabolism
8.Production of L-citrulline by a recombinant Corynebacterium crenatum SYPA 5-5 whole-cell biocatalyst.
Qianni LIU ; Meijuan XU ; Rongzhen ZHANG ; Meizhou WANG ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2017;33(11):1889-1894
Arginine deiminase (ADI) was first high-efficient expressed in Corynebacterium crenatum SYPA 5-5. The ADI was purified by Ni-NTA affinity chromatography and SDS-PAGE analysis showed the molecular weight (MW) was 46.8 kDa. The optimal temperature and pH of ADI were 37 ℃ and 6.5 respectively. The Michaelis constant was 12.18 mmol/L and the maximum velocity was 0.36 μmol/(min·mL). Under optimal conditions, 300 g/L of arginine was transformed and the productivity reach 8 g/(L·h). The recombinant strain was cultivated in a 5-L fermentor and used for whole-cell transformation of 300 g/L arginine, under repeated-batch bioconversion, the cumulative production reached 1 900 g/L.
9.Heterologous expression of Streptomyces coelicolor trehalose synthase and whole-cell biocatalyst production of trehalose in Escherichia coli.
Ao WU ; Xian ZHANG ; Meijuan XU ; Taowei YANG ; Huazhong LI ; Zhiming RAO
Chinese Journal of Biotechnology 2019;35(7):1348-1358
The trehalose synthase (ScTreS) gene from Streptomyces coelicolor was successfully cloned and heterologously expressed in Escherichia coli BL21(DE3). The protein purified by Ni-NTA affinity column showed an apparent molecular weight (MW) of 62.3 kDa analyzed by SDS-PAGE. The optimum temperature of the enzyme was 35 °C and the optimum pH was 7.0; the enzyme was sensitive to acidic conditions. By homologous modeling and sequence alignment, the enzyme was modified by site-directed mutagenesis. The relative activities of the mutant enzymes K246A and A165T were 1.43 and 1.39 times that of the wild type, an increased conversion rate of 14% and 10% respectively. To optimize the synthesis conditions of trehalose, the mutant strain K246A was cultivated in a 5-L fermentor and used for whole-cell transformation. The results showed that with the substrate maltose concentration of 300 g/L at 35 °C and pH 7.0, the highest conversion rate reached 71.3%, and the yield of trehalose was 213.93 g/L. However, when maltose concentration was increased to 700 g/L, the yield of trehalose can reach 465.98 g/L with a conversion rate of 66%.
Biocatalysis
;
Cloning, Molecular
;
Escherichia coli
;
Glucosyltransferases
;
Streptomyces coelicolor
;
Trehalose
10.Advances in stress tolerance mechanisms and synthetic biology for the industrial robustness of Corynebacterium glutamicum.
Meijuan XU ; Chunyu SHANGGUAN ; Xin CHEN ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(3):831-845
As a model industrial host and microorganism with the generally regarded as safe (GRAS) status, Corynebacterium glutamicum not only produces amino acids on a large scale in the fermentation industry, but also has the potential to produce various new products. C. glutamicum usually encounters various stresses in the process of producing compounds, which severely affect cell viability and production performance. The development of synthetic biology provides new technical means for improving the robustness of C. glutamicum. In this review, we discuss the tolerance mechanisms of C. glutamicum to various stresses in the fermentation process. At the same time, we highlight new synthetic biology strategies for boosting C. glutamicum robustness, including discovering new stress-resistant elements, modifying transcription factors, and using adaptive evolution strategies to mine stress-resistant functional modules. Finally, prospects of improving the robustness of engineered C. glutamicum strains ware provided, with an emphasis on biosensor, screening and design of transcription factors, and utilizing the multiple regulatory elements.
Amino Acids/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Synthetic Biology